- 29. Комбинаторные формулы
- Задачи по теме «Комбинаторика»
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Оставьте свой комментарий
- Безлимитный доступ к занятиям с онлайн-репетиторами
- Подарочные сертификаты
- Задачи по теории вероятностей с решениями
29. Комбинаторные формулы
Пусть имеется множество, состоящее из N Элементов. Обозначим его Un. Перестановкой из N Элементов называется заданный порядок во множестве Un.
1)распределение N различных должностей среди N человек;
2)расположение N различных предметов в одном ряду.
Сколько различных перестановок можно образовать во множестве Un? Число перестановок обозначается Pn (читается Р из N).
Чтобы вывести формулу числа перестановок, представим себе N Ячеек, пронумерованных числами 1,2. N. Все перестановки будем образовывать, располагая элементы Un В этих ячейках. В первую ячейку можно занести любой из N Элементов (иначе: первую ячейку можно заполнить N различными способами). Заполнив первую ячейку, можно N-1 способом заполнить вторую ячейку (иначе: при каждом способе заполнения первой ячейки находится N-1 способов заполнения второй ячейки). Таким образом существует N(N-1) способов заполнения двух первых ячеек. При заполнении первых двух ячеек можно найти N-2 способов заполнения третьей ячейки, откуда получается, что три ячейки можно заполнить N(N-1)(N-2) способами. Продолжая этот процесс, получим, что число способов заполнения N ячеек равно
. Отсюда
Число n(N — 1)(N — 2). ×3×2×1, то есть произведение всех натуральных чисел от 1 до N, называется «N-факториал» и обозначается N!. Отсюда Pn =N!
Пример. .
По определению считается: 1!=1; 0!=1.
Размещениями из N элементов по K элементов будем называть упорядоченные подмножества, состоящие из K элементов, множества Un — (множества, состоящего из N элементов). Число размещений из N элементов по K элементов обозначается
(читается «А из N по K«).
Примеры задач, приводящих к необходимости подсчета
1) Сколькими способами можно выбрать из 15 человек 5 кандидатов и назначить их на 5 различных должностей?
2) Сколькими способами можно из 20 книг отобрать 12 и расставить их в ряд на полке?
Источник
Задачи по теме «Комбинаторика»
Задачи для решения на закрепление нового материала
Задача № 1 . Сколькими способами могут быть расставлены 5 участниц финального
забега на 5-ти беговых дорожках?
Решение : Р 5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.
Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая
цифра входит в изображение числа только один раз?
Решение : Число всех перестановок из трех элементов равно Р 3 =3!, где 3!=1 * 2 * 3=6
Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.
Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести
девушек на танец?
Решение : два юноши не могут одновременно пригласить одну и ту же девушку. И
варианты, при которых одни и те же девушки танцуют с разными юношами,
считаются разными, поэтому:
Задача № 4 . Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,
6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только
Решение : В условии задачи предложено подсчитать число всевозможных комбинаций из
трех цифр, взятых из предположенных девяти цифр, причём порядок
расположения цифр в комбинации имеет значение (например, числа 132)
и 231 различные). Иначе говоря, нужно найти число размещений из девяти
элементов по три.
По формуле числа размещений находим:
Ответ : 504 трехзначных чисел.
Задача №5 Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3
Решение: Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все
возможные 3 – элементные подмножества множества, состоящего из 7
человек. Искомое число способов равно
Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов
распределения призовых (1, 2, 3) мест?
Решение : А 12 3 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест. Ответ : 1320 вариантов.
Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из
10 спортсменов. Сколькими способами тренер может определить, кто из них
побежит в эстафете 4 100 м на первом, втором, третьем и четвёртом этапах?
Решение: Выбор из 10 по 4 с учётом порядка:
способов.
Ответ: 5040 способов.
Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и
Решение: На первое место можно поставить любой из четырех шариков (4 способа), на
второе – любой из трех оставшихся (3 способа), на третье место – любой из
оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.
Всего 4 · 3 · 2 · 1 = 24 способа.
Р 4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.
Задача № 9 . Учащимся дали список из 10 книг, которые рекомендуется прочитать во
время каникул. Сколькими способами ученик может выбрать из них 6 книг?
Решение: Выбор 6 из 10 без учёта порядка: способов.
Ответ: 210 способов.
Задача № 10 . В 9 классе учатся 7 учащихся, в 10 — 9 учащихся, а в 11 — 8 учащихся. Для
работы на пришкольном участке надо выделить двух учащихся из 9 класса,
трех – из 10, и одного – из 11 . Сколько существует способов выбора
учащихся для работы на пришкольном участке?
Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из
первой совокупности (С 7 2 ) может сочетаться с каждым вариантом выбора из
второй (С 9 3 ) ) и с каждым вариантом выбора третьей (С 8 1 ) по правилу
Ответ: 14 112 способов.
Задача № 11. Девятиклассники Женя, Сережа, Коля, Наташа и Оля побежали на
перемене к теннисному столу, за которым уже шла игра. Сколькими
способами подбежавшие к столу пятеро девятиклассников могут занять
очередь для игры в настольный теннис?
Решение : Первым в очередь мог встать любой девятиклассник, вторым – любой из
оставшихся троих, третьим – любой из оставшихся двоих и четвёртым –
девятиклассник, подбежавший предпоследним, а пятым – последний. По
правилу умножения у пяти учащихся существует 5· 4 3 2 1=120 способов
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 807 человек из 76 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 284 человека из 69 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 603 человека из 75 регионов
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-212675
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
Российский совет олимпиад школьников намерен усилить требования к олимпиадам
Время чтения: 2 минуты
Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года
Время чтения: 1 минута
Минпросвещения разрабатывает образовательный минимум для подготовки педагогов
Время чтения: 2 минуты
ЕСПЧ запретил учителям оскорблять учеников
Время чтения: 3 минуты
Руководители управлений образования ДФО пройдут переобучение в Москве
Время чтения: 1 минута
В российских школах оборудуют кабинеты для сообщества «Большой перемены»
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник
Задачи по теории вероятностей с решениями
Задачи по теории вероятностей с решениями
Задача 1. В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует способов это сделать?
Решение. Старостой может быть выбран любой из 30 студентов, заместителем — любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т. е. n1=30, n2=29, n3=28. По правилу умножения общее число N способов выбора старосты, его заместителя и профорга равно N=n1´n2´n3=30´29´28=24360.
Задача 2. Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?
Решение. Первое письмо имеет n1=2 альтернативы – либо его относит к адресату первый почтальон, либо второй. Для второго письма также есть n2=2 альтернативы и т. д., т. е. n1=n2=…=n10=2. Следовательно, в силу правила умножения общее число способов распределений писем между двумя почтальонами равно
.
Задача 3. В ящике 100 деталей, из них 30 – деталей 1-го сорта, 50 – 2-го, остальные – 3-го. Сколько существует способов извлечения из ящика одной детали 1-го или 2-го сорта?
Решение. Деталь 1-го сорта может быть извлечена n1=30 способами, 2-го сорта – n2=50 способами. По правилу суммы существует N=n1+n2=30+50=80 способов извлечения одной детали 1-го или 2-го сорта.
Задача 5. Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?
Решение. Каждый вариант жеребьевки отличается только порядком участников конкурса, т. е. является перестановкой из 7 элементов. Их число равно
Задача 6. В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по всем номинациям установлены различные премии?
Решение. Каждый из вариантов распределения призов представляет собой комбинацию 5 фильмов из 10, отличающуюся от других комбинаций, как составом, так и их порядком. Так как каждый фильм может получить призы как по одной, так и по нескольким номинациям, то одни и те же фильмы могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 10 элементов по 5:
Задача 7. В шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?
Решение. Каждая партия играется двумя участниками из 16 и отличается от других только составом пар участников, т. е. представляет собой сочетания из 16 элементов по 2. Их число равно
Задача 8. В условиях задачи 6 определить, сколько существует вариантов распределения призов, если по всем номинациям установлены одинаковые призы?
Решение. Если по каждой номинации установлены одинаковые призы, то порядок фильмов в комбинации 5 призов значения не имеет, и число вариантов представляет собой число сочетаний с повторениями из 10 элементов по 5, определяемое по формуле
Задача 9. Садовник должен в течении трех дней посадить 6 деревьев. Сколькими способами он может распределить по дням работу, если будет сажать не менее одного дерева в день?
Решение. Предположим, что садовник сажает деревья в ряд, и может принимать различные решения относительно того, после какого по счету дерева остановиться в первый день и после какого – во второй. Таким образом, можно представить себе, что деревья разделены двумя перегородками, каждая из которых может стоять на одном из 5 мест (между деревьями). Перегородки должны стоять там по одной, поскольку иначе в какой-то день не будет посажено ни одного дерева. Таким образом, надо выбрать 2 элемента из 5 (без повторений). Следовательно, число способов .
Задача 10. Сколько существует четырехзначных чисел (возможно, начинающихся с нуля), сумма цифр которых равна 5?
Решение. Представим число 5 в виде суммы последовательных единиц, разделенных на группы перегородками (каждая группа в сумме образует очередную цифру числа). Понятно, что таких перегородок понадобится 3. Мест для перегородок имеется 6 (до всех единиц, между ними и после). Каждое место может занимать одна или несколько перегородок (в последнем случае между ними нет единиц, и соответствующая сумма равна нулю). Рассмотрим эти места в качестве элементов множества. Таким образом, надо выбрать 3 элемента из 6 (с повторениями). Следовательно, искомое количество чисел
Задача 11. Сколькими способами можно разбить группу из 25 студентов на три подгруппы А, В и С по 6, 9 и 10 человек соответственно?
Решение. Здесь n=25, k=3, n1=6, n2=9, n3=10. Согласно формуле, число таких разбиений равно
Задача 12. Сколько существует семизначных чисел, состоящих из цифр 4, 5 и 6, в которых цифра 4 повторяется 3 раза, а цифры 5 и 6 – по 2 раза?
Решение. Каждое семизначное число отличается от другого порядком следования цифр, при этом фактически все семь мест в этом числе делятся на три группы: на одни места ставится цифра «4», на другие места – цифра «5», а на третьи места – цифра «6». Таким образом, множество состоит из 7 элементов (n=7), причем n1=3, n2=2, n3=2, и, следовательно, количество таких чисел равно
2. Классическая вероятностная модель. Геометрическая вероятность
Задача 1. В ящике 5 апельсинов и 4 яблока. Наудачу выбираются 3 фрукта. Какова вероятность, что все три фрукта – апельсины?
Решение. Элементарными исходами здесь являются наборы, включающие 3 фрукта. Поскольку порядок фруктов безразличен, будем считать их выбор неупорядоченным (и бесповторным). Общее число элементарных исходов равно числу способов выбрать 3 фрукта из 9, т. е. числу сочетаний
. Число благоприятствующих исходов
равно числу способов выбора 3 апельсинов из имеющихся 5, т. е.
. Тогда искомая вероятность
.
Задача 2. Преподаватель предлагает каждому из трех студентов задумать любое число от 1 до 10. Считая, что выбор каждым из студентов любого числа из заданных равновозможен, найти вероятность того, что у кого-то из них задуманные числа совпадут.
Решение. Вначале подсчитаем общее количество исходов. Первый из студентов выбирает одно из 10 чисел и имеет n1=10 возможностей, второй тоже имеет n2=10 возможностей, наконец, третий также имеет n3=10 возможностей. В силу правила умножения общее число способов равно: n= n1´n2´n3=103 = 1000, т. е. все пространство содержит 1000 элементарных исходов. Для вычисления вероятности события A удобно перейти к противоположному событию, т. е. подсчитать количество тех случаев, когда все три студента задумывают разные числа. Первый из них по-прежнему имеет m1=10 способов выбора числа. Второй студент имеет теперь лишь m2=9 возможностей, поскольку ему приходится заботиться о том, чтобы его число не совпало с задуманным числом первого студента. Третий студент еще более ограничен в выборе — у него всего m3=8 возможностей. Поэтому общее число комбинаций задуманных чисел, в которых нет совпадений, равно m=10×9×8=720. Случаев, в которых есть совпадения, остается 280. Следовательно, искомая вероятность равна Р=280/1000= 0,28.
Задача 3. Найти вероятность того, что в 8-значном числе ровно 4 цифры совпадают, а остальные различны.
Решение. Событие А=<восьмизначное число содержит 4 одинаковые цифры>. Из условия задачи следует, что в числе пять различных цифр, одна из них повторяется. Число способов её выбора равно числу способов выбора одной цифры из 10 цифр. Эта цифра занимает любые 4 места в числе, что возможно сделать способами, так как порядок здесь не важен. Оставшиеся 4 места занимают различные цифры из неиспользованных девяти, и так как число зависит от порядка расположения цифр, то число способов выбора четырех цифр равно числу размещений
. Тогда число благоприятствующих исходов
. Всего же способов составления 8-значных чисел равно |W|=108. Искомая вероятность равна
.
Задача 4. Шесть клиентов случайным образом обращаются в 5 фирм. Найти вероятность того, что хотя бы в одну фирму никто не обратится.
Решение. Рассмотрим противоположное событие , состоящее в том, что в каждую из 5 фирм обратился клиент, тогда в какую-то из них обратились 2 клиента, а в остальные 4 фирмы – по одному клиенту. Таких возможностей
. Общее количество способов распределить 6 клиентов по 5 фирмам
. Отсюда
. Следовательно,
.
Задача 5. Пусть в урне имеется N шаров, из них М белых и N–M черных. Из урны извлекается n шаров. Найти вероятность того, что среди них окажется ровно m белых шаров.
Решение. Так как порядок элементов здесь несущественен, то число всех возможных наборов объема n из N элементов равно числу сочетаний . Число испытаний, которые благоприятcтвуют событию А – «m белых шаров, n–m черных», равно
, и, следовательно, искомая вероятность равна Р(А)=
.
Задача 6. Точку наудачу бросили на отрезок [0; 2]. Какова вероятность ее попадания в отрезок [0,5; 1,4]?
Решение. Здесь пространство элементарных исходов весь отрезок , а множество благоприятствующих исходов , при этом длины этих отрезков равны и соответственно. Поэтому
.
Задача 7 (задача о встрече). Два лица А и В условились встретиться в определенном месте между 12 и 13 часами. Пришедший первым ждет другого в течении 20 минут, после чего уходит. Чему равна вероятность встречи лиц А и В, если приход каждого из них может произойти наудачу в течении указанного часа и моменты прихода независимы?
Решение. Обозначим момент прихода лица А через х и лица В – через у. Для того, чтобы встреча произошла, необходимо и достаточно, чтобы ôх-уô£20. Изобразим х и у как координаты на плоскости, в качестве единицы масштаба выберем минуту. Всевозможные исходы представляются точками квадрата со стороной 60, а благоприятствующие встрече располагаются в заштрихованной области. Искомая вероятность равна отношению площади заштрихованной фигуры (рис. 2.1) к площади всего квадрата: P(A) = (602–402)/602 = 5/9.
3. Основные формулы теории вероятностей
Задача 1. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?
Решение. Событие A= <вынуты пуговицы одного цвета>можно представить в виде суммы , где события
и
означают выбор пуговиц красного и синего цвета соответственно. Вероятность вытащить две красные пуговицы равна
, а вероятность вытащить две синие пуговицы
. Так как события
и
не могут произойти одновременно, то в силу теоремы сложения
Задача 2. Среди сотрудников фирмы 28% знают английский язык, 30% – немецкий, 42% – французский; английский и немецкий – 8%, английский и французский – 10%, немецкий и французский – 5%, все три языка – 3%. Найти вероятность того, что случайно выбранный сотрудник фирмы: а) знает английский или немецкий; б) знает английский, немецкий или французский; в) не знает ни один из перечисленных языков.
Решение. Обозначим через A, B и С события, заключающиеся в том, что случайно выбранный сотрудник фирмы владеет английским, немецким или французским соответственно. Очевидно, доли сотрудников фирмы, владеющих теми или иными языками, определяют вероятности этих событий. Получаем:
Задача 3. В семье – двое детей. Какова вероятность, что старший ребенок – мальчик, если известно, что в семье есть дети обоего пола?
Решение. Пусть А=<старший ребенок – мальчик>, B=<в семье есть дети обоего пола>. Будем считать, что рождение мальчика и рождение девочки – равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки – Д, то пространство всех элементарных исходов состоит из четырех пар: . В этом пространстве лишь два исхода (МД и ДМ) отвечают событию B. Событие AB означает, что в семье есть дети обоего пола. Старший ребенок – мальчик, следовательно, второй (младший) ребенок – девочка. Этому событию AB отвечает один исход – МД. Таким образом, |AB|=1, |B|=2 и
Задача 4. Мастер, имея 10 деталей, из которых 3 – нестандартных, проверяет детали одну за другой, пока ему не попадется стандартная. Какова вероятность, что он проверит ровно две детали?
Решение. Событие А= <мастер проверил ровно две детали>означает, что при такой проверке первая деталь оказалась нестандартной, а вторая – стандартная. Значит, , где
= < первая деталь оказалась нестандартной >и
=<вторая деталь – стандартная>. Очевидно, что вероятность события А1 равна
кроме того,
, так как перед взятием второй детали у мастера осталось 9 деталей, из которых только 2 нестандартные и 7 стандартных. По теореме умножения
Задача 5. В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут белый шар, если из каждого ящика вынуто по одному шару.
Решение. Событие A= <хотя бы из одного ящика вынут белый шар>можно представить в виде суммы , где события
и
означают появление белого шара из первого и второго ящика соответственно. Вероятность вытащить белый шар из первого ящика равна
, а вероятность вытащить белый шар из второго ящика
. Кроме того, в силу независимости
и
имеем:
. По теореме сложения получаем:
.
Задача 6. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студентов, а третий — 21 студента (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.
Решение. Обозначим через гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи
,
,
.
Пусть событие A=<слабо подготовившийся студент сдал экзамен>. Тогда снова в силу условия задачи
,
,
.
По формуле полной вероятности получаем:
.
Задача 7. Фирма имеет три источника поставки комплектующих – фирмы А, B, С. На долю фирмы А приходится 50% общего объема поставок, В – 30% и С – 20%. Из практики известно, что среди поставляемых фирмой А деталей 10% бракованных, фирмой В – 5% и фирмой С – 6%. Какова вероятность, что взятая наугад деталь окажется годной?
Решение. Пусть событие G – появление годной детали. Вероятности гипотез о том, что деталь поставлена фирмами А, B, С, равны сответственно Р(А)=0,5, Р(В)=0,3, Р(С)=0,2. Условные вероятности появления при этом годной детали равны Р(G|A)=0,9, P(G|B)=0,95, P(G|C)=0,94 (как вероятности противоположных событий к появлению бракованной). По формуле полной вероятности получаем:
Задача 8 (см. задачу 6). Пусть известно, что студент не сдал экзамен, т. е. получил оценку «неудовлетворительно». Кому из трех преподавателей вероятнее всего он отвечал?
Решение. Вероятность получить «неуд» равна . Требуется вычислить условные вероятности. По формулам Байеса получаем:
, и аналогично,
,
.
Отсюда следует, что, вероятнее всего, слабо подготовившийся студент сдавал экзамен третьему экзаменатору.
4. Повторные независимые испытания. Теорема Бернулли
Задача 1. Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».
Решение. Шестикратное бросание кости можно рассматривать как последовательность независимых испытаний с вероятностью успеха («шестерки»), равной 1/6, и вероятностью неудачи — 5/6. Искомую вероятность вычисляем по формуле .
Задача 2. Монета бросается 6 раз. Найти вероятность того, что герб выпадет не более, чем 2 раза.
Решение. Искомая вероятность равна сумме вероятностей трех событий, состоящих в том, что герб не выпадет ни разу, либо один раз, либо два раза:
Р(А) = Р6(0) + Р6(1) + Р6(2) = .
Задача 3. Аудитор обнаруживает финансовые нарушения у проверяемой фирмы с вероятностью 0,9. Найти вероятность того, что среди 4 фирм-нарушителей будет выявлено больше половины.
Решение. Событие состоит в том, что из 4 фирм-нарушителей будет выявлено три или четыре, т. е.
.
Задача 4. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).
Решение. Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am — событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):
Источник