Количество способов составления списка

Математика

определения и теоремы, учебная литература, решение задач и примеров

Задачи на вероятность (Часть 1)

Задачи на вероятность. Элементы комбинаторики. Часть 1.

Для решения большинства задач на вероятность (по теории вероятностей) необходимы базовые знание комбинаторики (понятия сочетаний, перестановок, размещений). Ниже представлен ряд задач по комбинаторике, которые являются некой подготовкой к решению задач по теории вероятностей.

Задача 1. (Ниворожкина, Морозова. Основы статистики с элементами теории вероятностей)

Правление коммерческого банка выбирает из 10 кандидатов 3 человек на различные должности (все 10 кандидатов имеют равные шансы). Сколько всевозможных групп по 3 человека можно составить из 10 кандидатов?

В условии задачи речь идет о расчете числа комбинаций из 10 элементов по 3. Так как группы по 3 человека могут отличаться и составом претендентов, и заполняемыми ими вакансиями, т.е. порядком, то для ответа необходимо рассчитать число размещений из 10 элементов по 3:

N = A 3 10 = 10·9·8=720.

Ответ. Можно составить 720 групп по 3 человека из 10.

Задача 2. (Ниворожкина, Морозова. Основы статистики с элементами теории вероятностей)

Правление коммерческого банка выбирает из 10 кандидатов 3 человек на одинаковые должности (все 10 кандидатов имеют равные шансы). Сколько всевозможных групп по 3 человека можно составить из 10 кандидатов?

Состав различных групп должен отличаться по крайней мере хотя бы одним кандидатом и порядок выбора кандидата не имеет значения, следовательно, этот вид соединений представляет собой сочетания. По условию задачи n = 10, m = 3.

Получаем C 3 10 = 10!/3!7! = 120.

Ответ. Можно составить 120 групп из 3 человек по 10.

Задача 3. (Ниворожкина, Морозова. Основы статистики с элементами теории вероятностей)

Сколькими способами можно выбрать 6 пирожных в кондитерской, где есть 4 разных сорта пирожных?

Это случай сочетания с повторениями.

Ответ. Существует 84 различных способа выбора пирожных.

Задача 4. (Ниворожкина, Морозова. Основы статистики с элементами теории вероятностей)

Менеджер ежедневно просматривает 6 изданий экономического содержания. Если порядок просмотра изданий случаен, то сколько существует способов его осуществления?

Способы просмотра изданий различаются только порядком, так как число, а значит, и состав изданий при каждом способе неизменны. Следовательно, при решении этой задачи необходимо рассчитать число перестановок.
По условию задачи n = 6. Следовательно,

Рn = 6! =1·2·3·4·5·6 = 720.

Ответ. Можно просмотреть издания 720 способами.

а) Сколько существует способов составления в случайном порядке списка из 7 кандидатов для выбора на руководящую должность?

б) Какова вероятность того, что кандидаты будут расставлены в списке по возрасту (от меньшего к большему)?

а) Так как порядок случаен, то количество способов равно числу перестановок из 7 человек:

P = 7! = 7 ⋅6⋅5⋅4⋅3⋅2⋅1 = 5040 (способов).

б) в предположении, что у всех кандидатов возрасты различные, то есть не найдется двух и более человек с одинаковым возрастом, количество способов расставить всех кандидатов по возрасту равно 1. Поэтому вероятность равна:

Читайте также:  Спид вич способ заражения

P = 1/5040 = 0,0002.

Ответ: а) 5040; б) 1/5040.

Модельер, разрабатывающий новую коллекцию одежды к весеннему сезону, создает модели в зеленой, черной и красной цветовой гамме. Вероят­ность того, что зеленый цвет будет в моде весной, модельер оценивает в 0,3, что черный — в 0,2, а вероятность того, что будет моден красный цвет — в 0,15. Пред­полагая, что цвета выбираются независимо друг от друга, оцените вероятность того, что цветовое решение коллекции будет удачным хотя бы по одному из вы­бранных цветов?

p1 = 0,3 — вероятность того, что зеленый цвет будет в моде,

p2 = 0,2 — вероятность того, что черный цвет будет в моде,

p3 = 0,15 — вероятность того, что красный цвет будет в моде.

Событие А — цветовое решение удачно хотя бы по одному из выбранных цветов.

Тогда вероятность P(A) будет равна:

P(A) = 1 — q1q2q3 = 1 — (1-p1)(1-p2)(1-p3) = 1-0,7 ⋅0,8⋅0,85 = 0,524.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Источник

2.1. Основные комбинаторные формулы

Размещения. Размещениями из N элементов по M в каждом называются такие соединения, из которых каждое содержит M элементов, взятых из числа данных N элементов, и которые отличаются друг от друга либо самими элементами (хотя бы одним), либо лишь порядком их расположения.

Число размещений из N элементов по M в каждом обозначается символом И вычисляется по формуле

, (1)

Где (считается, что 0! = 1).

Пример 2.1. Научное общество состоит из 25 человек. Надо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами может быть сделан этот выбор, если каждый член общества может занимать лишь один пост?

Решение. В этом случае надо найти число размещений (без повторений) из 25 элементов по 4, так как здесь играет роль и то, кто будет выбран в руковод­ство общества, и то, какие посты займут выбранные.

Ответ: .

Размещения с повторениями. Каждое размещение с повторениями из
N элементов по M элементов может состоять не только из различных элементов, но из M каких угодно и как угодно повторяющихся элементов, взятых из данных N элементов.

Соединения, отличающиеся друг от друга хотя бы порядком расположения элементов, считаются различными размещениями.

Число размещений с повторениями из n элементов по M элементов обозначается символом и вычисляется по формуле

(2)

Пример 2.2. Для запирания сейфов и автоматических камер хранения применяют секретные замки, которые открываются лишь тогда, когда набрано некоторое «тайное слово». Пусть на диск нанесено 12 букв, а секретное слово состоит из 5 букв. Сколько неудачных попыток может быть сделано человеком, не знающим секретного слова?

Решение. Общее число возможных комбинаций можно найти по формуле (2)

.

Число неудачных попыток — 248 832 – 1 = 248 831.

Сочетания. Сочетаниями из N элементов по M в каждом называются такие соединения, из которых каждое содержит M элементов, взятых из числа данных N элементов, и которые отличаются друг от друга по крайней мере одним элементом.

Читайте также:  Генерал лейтенант способ образования

Число сочетаний из n элементов по M в каждом обозначается символом и вычисляется по формуле

, (3)

Где .

Пример 2.3. Покупая карточку лотереи «Спортлото», игрок должен зачеркнуть 6 из 49 возможных чисел от 1 до 49. Сколько возможных комбинаций можно составить из 49 по 6, если порядок чисел безразличен?

Решение. Число возможных комбинаций можно рассчитать по формуле (3)

.

Сочетания с повторениями. Сочетание с повторениями из N элементов по M элементов может содержать любой элемент сколько угодно раз от 1 до M включительно или не содержать его совсем, т. е. каждое сочетание из N элементов по M элементов может состоять не только из M различных элементов, но из M каких угодно и как угодно повторяющихся элементов.

Число сочетаний с повторениями из n элементов по M обозначают символом и вычисляют по формуле

.

В сочетаниях с повторениями M может быть и больше N.

Пример 2.4. В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение. Число различных покупок равно числу сочетаний с повторениями из 4 по 7:

.

Ответ: Из пирожных 4 сортов 7 пирожных можно выбрать 120 способами.

Перестановки. Перестановками из N элементов называются такие соединения, из которых каждое содержит все N элементов и которые отличаются друг от друга лишь порядком расположения элементов.

Число перестановок из N элементов обозначается символом , это то же самое, что число размещений из N элементов по N в каждом, поэтому

.

Пример 2.5. Сколько существует способов составления списка 10 деловых звонков случайным образом?

Решение. Количество способов составления списка из 10 звонков будет равно числу перестановок из 10 элементов:

.

Ответ: Число способов составления списка из 10 звонков равно 3 628 800.

Перестановки с повторениями. Пусть имеются N элементов, среди которых элементов одного типа, элементов другого типа, элементов
L-го типа . Число перестановок из этих N элементов равно числу перестановок с повторениями, обозначается и вычисляется по формуле

.

Пример 2.6. Десять приезжих мужчин размещаются в гостинице в двух трехместных и одном четырехместном номерах. Сколько существует способов их размещения?

Решение.

Источник

2.1. Основные комбинаторные формулы

Размещения. Размещениями из N элементов по M в каждом называются такие соединения, из которых каждое содержит M элементов, взятых из числа данных N элементов, и которые отличаются друг от друга либо самими элементами (хотя бы одним), либо лишь порядком их расположения.

Число размещений из N элементов по M в каждом обозначается символом И вычисляется по формуле

, (1)

Где (считается, что 0! = 1).

Пример 2.1. Научное общество состоит из 25 человек. Надо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами может быть сделан этот выбор, если каждый член общества может занимать лишь один пост?

Решение. В этом случае надо найти число размещений (без повторений) из 25 элементов по 4, так как здесь играет роль и то, кто будет выбран в руковод­ство общества, и то, какие посты займут выбранные.

Ответ: .

Размещения с повторениями. Каждое размещение с повторениями из
N элементов по M элементов может состоять не только из различных элементов, но из M каких угодно и как угодно повторяющихся элементов, взятых из данных N элементов.

Читайте также:  Миф это ранний способ понимания

Соединения, отличающиеся друг от друга хотя бы порядком расположения элементов, считаются различными размещениями.

Число размещений с повторениями из n элементов по M элементов обозначается символом и вычисляется по формуле

(2)

Пример 2.2. Для запирания сейфов и автоматических камер хранения применяют секретные замки, которые открываются лишь тогда, когда набрано некоторое «тайное слово». Пусть на диск нанесено 12 букв, а секретное слово состоит из 5 букв. Сколько неудачных попыток может быть сделано человеком, не знающим секретного слова?

Решение. Общее число возможных комбинаций можно найти по формуле (2)

.

Число неудачных попыток — 248 832 – 1 = 248 831.

Сочетания. Сочетаниями из N элементов по M в каждом называются такие соединения, из которых каждое содержит M элементов, взятых из числа данных N элементов, и которые отличаются друг от друга по крайней мере одним элементом.

Число сочетаний из n элементов по M в каждом обозначается символом и вычисляется по формуле

, (3)

Где .

Пример 2.3. Покупая карточку лотереи «Спортлото», игрок должен зачеркнуть 6 из 49 возможных чисел от 1 до 49. Сколько возможных комбинаций можно составить из 49 по 6, если порядок чисел безразличен?

Решение. Число возможных комбинаций можно рассчитать по формуле (3)

.

Сочетания с повторениями. Сочетание с повторениями из N элементов по M элементов может содержать любой элемент сколько угодно раз от 1 до M включительно или не содержать его совсем, т. е. каждое сочетание из N элементов по M элементов может состоять не только из M различных элементов, но из M каких угодно и как угодно повторяющихся элементов.

Число сочетаний с повторениями из n элементов по M обозначают символом и вычисляют по формуле

.

В сочетаниях с повторениями M может быть и больше N.

Пример 2.4. В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение. Число различных покупок равно числу сочетаний с повторениями из 4 по 7:

.

Ответ: Из пирожных 4 сортов 7 пирожных можно выбрать 120 способами.

Перестановки. Перестановками из N элементов называются такие соединения, из которых каждое содержит все N элементов и которые отличаются друг от друга лишь порядком расположения элементов.

Число перестановок из N элементов обозначается символом , это то же самое, что число размещений из N элементов по N в каждом, поэтому

.

Пример 2.5. Сколько существует способов составления списка 10 деловых звонков случайным образом?

Решение. Количество способов составления списка из 10 звонков будет равно числу перестановок из 10 элементов:

.

Ответ: Число способов составления списка из 10 звонков равно 3 628 800.

Перестановки с повторениями. Пусть имеются N элементов, среди которых элементов одного типа, элементов другого типа, элементов
L-го типа . Число перестановок из этих N элементов равно числу перестановок с повторениями, обозначается и вычисляется по формуле

.

Пример 2.6. Десять приезжих мужчин размещаются в гостинице в двух трехместных и одном четырехместном номерах. Сколько существует способов их размещения?

Решение.

Источник

Оцените статью
Разные способы