Способы передачи тепловой энергии
Передачу тепловой энергии называют теплопередачей. Есть три способа (рис. 1) передачи тепловой энергии:
С помощью теплопередачи можно изменять внутреннюю энергию тел.
Что такое теплопроводность
Теплопроводность — это передача (внутренней) тепловой энергии от одной части тела к другой его части.
Примечание: С помощью теплопроводности можно передавать тепловую энергию от одного тела к другому, если плотно прижать тела друг к другу.
При теплопроводности передается только энергия, а вещество не переносится.
Теплопроводности различных веществ отличаются. Металлы в твердом и жидком состоянии очень хорошо проводят тепло, то есть, обладают высокой теплопроводностью.
Примечание: Медь и серебро – это металлы с очень высокой теплопроводностью.
Но у остальных жидкостей теплопроводность меньше, чему твердых тел.
А у газов, например, у воздуха, теплопроводность очень мала. Поэтому пористые тела, содержащие большое количество газа, хорошо изолируют тепло.
Дом, построенный из пенобетона может иметь более тонкие стены, чем кирпичный дом.
В твердых телах тепло передается только с помощью теплопроводности.
Что такое конвекция и как она происходит
В жидкостях и газах тепло передается только с помощью конвекции. Конвекцио (лат.) – перенос.
Слои жидкости, или газа, имеющие различную температуру, могут самостоятельно перемешиваться. Этот процесс называется конвекцией.
Примечание: Конвекция — это самостоятельное перемешивание слоев жидкости, или газа, имеющих различную температуру.
Располагая руку в нескольких сантиметрах над горящей свечой, из-за конвекции мы можем ощущать тепло.
Как происходит конвекция: Более горячие слои жидкости, или газа, имеют маленькую плотность, поэтому поднимаются вверх, а их место занимают более холодные слои.
Примечание: Чтобы конвекция происходила хорошо, нужно нагревать жидкости и газы снизу.
— в чайнике нагревается вся вода, а не только находящаяся в нижней части чайника;
— воздух в помещении от пола до потолка прогревается батареями отопления, расположенными в нижней части помещения;
— дуют ветры, днем – с моря (дневной бриз), а по ночам – с суши на море (ночной бриз).
Что такое излучение
Излучение – это перенос тепловой энергии без помощи вещества. Поэтому в вакууме тепловая энергия переносится излучением.
Вакуум – это отсутствие молекул вещества в пространстве (глубокий вакуум в космосе), или, наличие небольшого количества молекул газа.
Например, в современных лабораториях можно из-под колокола откачать воздух до состояния, когда в одном кубометре пространства под колоколом будет содержаться всего несколько молекул воздуха.
Все тела могут излучать энергию. Сильно нагретые тела излучают больше энергии, чем более холодные.
Солнце – это большой раскаленный газовый шар, то есть, звезда. Солнце излучает тепло, это тепло через вакуум с помощью излучения переносится на Землю и нагревает ее поверхность и все тела, находящиеся на ней.
Известно, что черные предметы на солнце нагреваются очень быстро, а белые, почти не нагреваются.
По причине излучения более темные тела охлаждаются быстрее, чем белые.
В наши дни широкое распространение получили бытовые инфракрасные обогреватели. Эти обогреватели нагревают окружающие предметы с помощью теплового (инфракрасного) излучения.
Примечание: Теплопроводность и конвекция происходят в веществе. А излучение может переносить тепловую энергию без помощи вещества.
Источник
Теплообмен — основные виды в физике, суть и примеры
Передача тепла или теплообмен это процесс распространения внутренней энергии в пространстве с разными температурами.
Теплопроводность это способность веществ и тел проводить энергию (тепло) от частей с высокой температурой к частям с более низкой. Такая способность существует за счет движения частиц. Энергия может передаваться между телами и внутри одного тела. Нагревая в пламени один конец гвоздя, мы рискуем обжечься о другой его конец, не находящийся в пламени.
В начале развития науки о свойствах тел и веществ считалось, что тепло передается путем перетекания «теплорода» между телами. Позже, с развитием физики, теплопроводность получила объяснение взаимодействием частиц вещества. Электроны в нагреваемом над огнем участке гвоздя движутся активнее и через столкновения отдают тепло медленным электронам в части, которая не подвергается нагреванию.
Виды теплообмена и способы передачи тепла
В физике выделяют несколько видов теплообмена:
Теплопроводность – свойство материалов передавать через свой объем поток тепла путем обмена энергией движения частиц.
Конвекция – перенос тепла, осуществляемый перемещением неравномерно прогретых участков среды (газа, жидкости) в пространстве.
Излучение – в данном случае перенос тепла в вакууме или газовой среде осуществляется электромагнитными волнами.
Рассмотрим сущность и назначение каждого из видов теплообмена.
Теплопроводность
В большинстве случаев виды теплообмена тесно связаны и проходят одновременно. Конвекция всегда дополняется теплопроводностью, так как при движении объема среды всегда имеется взаимодействие частиц с разными температурами. Такой процесс имеет название конвективного теплообмена.
Примером такого типа теплообмена является остывание горячего чая, налитого в холодную металлическую кружку. Отдача тепла может сопровождаться его излучением, тогда в переносе теплоты участвуют все три вида: теплопроводность, конвекция, тепловое излучение.
Рассмотрим более подробно теплопроводность.
Этот вид теплообмена присущ твердым телам, но присутствует так же в жидкостях и газах. В твердых телах теплопроводность является основным видом теплообмена и напрямую зависима от природы вещества, его плотности, химического состава, влажности, температуры.
Разные тела и вещества имеют разную теплопроводность. Количественным показателем теплопроводности служит коэффициент теплопроводности, он обозначается буквой λ (лямбда). Чем выше плотность, влажность и температура тела, тем больше λ.
Проведение тепла происходит за счет взаимодействий между частицами. Конечной целью процесса будет выравнивание внутренней температуры по всему телу. Теплопроводность жидкостей меньше, чем у твердых тел, у газов – меньше, чем у жидкостей. Причиной является большое расстояние между молекулами в жидкостях, особенно в газах.
Низкая теплопроводность воздуха издавна используется при изготовлении двойных оконных рам. Теплопроводность воздуха гораздо ниже теплопроводности стекла. Воздушная прослойка межу стеклами защищает от зимней стужи.
Плохая теплопроводность, появившаяся в процессе эволюции в качестве защиты от критических температур, у живых организмов. Шерсть, пух, волосы, жир обладают очень низкой теплопроводностью. Именно поэтому мы не мерзнем зимой в теплых носках, песцы могут спать на снегу, а моржи выживают в условиях Арктики за счет жировой прослойки.
В таблице приведены примеры материалов, веществ и сред с наименьшей и наибольшей теплопроводностью.
Исходя из данных, приведенных в таблице, можно сделать некоторые выводы:
В вакууме тепло не проводится. Передача тепла в вакууме может происходить с помощью излучения. Таким способом тепло Солнца доходит до нашей планеты.
Материал с наивысшей теплопроводностью называется графен, который активно используется в наноэлектронике.
Металлы тоже достаточно теплопроводные. Известно, как быстро нагревается металлическая ложка в горячем супе.
Строительные материалы обладают низкой теплопроводностью, что и обуславливает их использование для возведения теплых и надежных жилищ.
С понятием теплопроводности тесно связано понятие теплоемкости.
Теплоемкостью называют количество тепла, которое поглотило тело (вещество), чтобы его температура повысилась на 1 градус. Действительно, для повышения температуры металлического стержня на 1 градус, необходимо, чтобы он обладал теплопроводностью для равномерного нагревания всего объёма.
Знания о теплопроводности веществ и материалов необходимы в строительстве, промышленности, быту. Степень теплопроводности материала обуславливает его применение в той или иной сфере. Разработка и поиск новых веществ с уникальными теплоизоляционными свойствами – важнейшая задача современной науки.
Конвекция
При конвекции энергия передается потоками, возникающими в различных средах.
В зависимости от причины возникновения, процессы этого типа теплообмена делят на естественную и вынужденную конвекцию:
Естественная конвекция возникает под влиянием естественных сил: неравномерного прогрева, силы тяжести. Процессы естественной конвекции происходят на планете ежеминутно. Появление облаков, формирование атмосферных фронтов, циклонов и антициклонов в атмосфере возможно благодаря этому процессу. Воды мирового океана так же подвержены процессам конвекции, в результате образуются океанические течения. Движение тектонических плит так же обусловлено конвективными процессами.
Вынужденная конвекция — зависит от присутствия внешних сил. Например, при помешивании ложкой горячий чай остывает именно за счет этого явления.
Излучение
Излучение тепла является электромагнитным процессом. Тепло выделяют любые тела, температура которых выше 0 К.
Тепло излучается телами благодаря тому, что любое вещество состоит из молекул и атомов, а они, в свою очередь, из заряженных протонов и электронов. Таким образом, любое тело оказывается пронизанным электромагнитным полем.
Источник
Способы передачи тепла
Существует три способа передачи тепла нагретым телом: теплопроводность, конвекция и лучеиспускание.
Теплопроводность – свойство тел передавать тепло от более нагретых мест к менее нагретым. Путем теплопроводности тепло передается через твердые, жидкие и газообразные тела. Количество тепла dQ, проходящее в единицу времени dt через элементарную площадку dS от более нагретого участка тела к менее нагретому, пропорционально градиенту температуры dθ/dx в направлении, перпендикулярном площадке и зависит от теплопроводящих свойств материала, т.е.
, (36)
где – коэффициент теплопроводности.
Знак (–) показывает, что передача тепла идет от мест более нагретых к менее нагретым.
Коэффициент теплопроводности численно равен количеству тепла, проходящему через площадку в 1 м 2 изотермической поверхности в течение 1 с при градиенте температуры в 1 о C/м.
Конвекция. Нагретое тело, помещенное в газ или жидкость, отдает свое тепло частичкам газа или жидкости, которые, нагреваясь, становятся легче и поднимаются вверх, а на их место поступают более холодные частички. Интенсивность охлаждения зависит от скорости движения частиц охлаждающей среды. Если движение частиц охлаждающей среды создается только за счет нагрева их у поверхности горячего тела, то такая конвекция называется естественной конвекцией.
Если движение частиц создается принудительно, например, при помощи вентиляторов, насосов, то такая конвекция называется искусственной. Количество тепла, отдаваемого поверхностью нагретого тела в единицу времени за счет конвекции, определяют по формуле
, (37)
где Kток – коэффициет теплоотдачи конвекцией, Вт/ o C∙см 2 ; – температура нагретой поверхности, о C;
– температура охлаждающей среды; S – площадь поверхности охлаждения, м 2 .
Лучеиспускание. Это процесс отдачи тепла, при котором тепловая энергия, превращаясь в лучистую, передается от нагретого тела в окружающую среду. Источником лучистой энергии является любое тело, у которого температура отлична от абсолютного нуля. Поглощение лучистой энергии телом зависит от длины волны и состояния его поверхности. Тело, поверхность которого поглощает все падающие на нее лучи, называется абсолютно черным телом. При нагревании оно обладает максимальной способностью излучения энергии. Излучательная способность других тел сравнивается с абсолютно черным телом как с эталоном. Количество тепла, отдаваемого при излучении с поверхности нагретого тела в 1с, может быть определено по формуле
, (38)
где Kтол – коэффициент теплоотдачи лучеиспусканием, Вт/ о С 4 ∙м 2 .
Отдача тепла нагретым телом обычно происходит одновременно путем теплопроводности, конвекции и лучеиспускания. При этом трудно определить, какая часть тепла передается в окружающую среду тем или иным способом. В практических расчетах количество тепла, отводимого с поверхности нагретого тела всеми видами теплоотдачи можно определить по формуле Ньютона
, (39)
где Kто – эквивалентный коэффициент теплоотдачи, учитывающий отдачу тепла всеми способами.
Эквивалентный коэффициент теплоотдачи при небольших температурах изменяется незначительно. Поэтому при приближенных расчетах коэффициент теплоотдачи можно принимать постоянным.
Источник