- Способ группировки
- Группировка слагаемых и множителей: правило, примеры
- Что такое группировка слагаемых
- Что такое группировка множителей
- Способ группировки
- Примеры способа группировки
- Первый способ
- Второй способ
- Смена знаков в скобках
- Лекция 5 Статистическая сводка и группировка
- Статистическая сводка
- Статистическая группировка
- Этапы построения статистических группировок
- Интервалы статистической группировки
Способ группировки
Способ группировке в алгебре — один из способов разложения многочлена на множители.
Способ группировки можно разбить на два этапа:
1) Объединение членов многочлена в группы, имеющие общий множитель, и вынесение из каждой группы общего множителя (в одной из групп общего множителя может не быть).
2) Вынесение полученного общего для всех групп множителя за скобки.
Группируем первое слагаемое со вторым, третье — с четвертым.
Лучше при группировке между скобками всегда ставить знак «+»:
Из первых скобок выносим общий множитель a, из вторых — -3. При вынесении «-» за скобки все знаки в скобках меняем на противоположные:
Общий множитель (x+7) выносим за скобки:
Группировать можно было иначе: первое слагаемое — с третьим, второе — с четвертым:
Из первых скобок выносим общий множитель x, из вторых — 7:
Общий множитель (a-3) выносим за скобки:
При любом способе группировки ответ получается одинаковый (от перестановки мест множителей произведение не меняется).
Группируем первое слагаемое со вторым, третье — с четвертым:
Из первых скобок выносим общий множитель x, из вторых — «-«:
Общий множитель (4-y) выносим за скобки:
Внимание! Сколько слагаемых было до вынесения общего множителя за скобки, ровно столько же должно остаться после вынесения. Если общий множитель совпадает с одним из слагаемых (с точностью до знака), на месте этого слагаемого после вынесения общего множителя за скобки остается единица (+1 или -1).
Сгруппируем первое слагаемое со вторым и третьим, четвертое — с пятым и шестым:
Из первых скобок выносим общий множитель a, из вторых — -b:
Общий множитель (a²+1+b²) выносим за скобки:
Можно было группировать и по два слагаемых. Например, первое — с четвертым, второе — с пятым, третье — с шестым:
Из первых скобок выносим общий множитель a², во вторых скобках общего множителя нет, из третьих — b²:
Общий множитель (a-b) выносим за скобки. Не забываем поставить единицу на место (a-b)!
Источник
Группировка слагаемых и множителей: правило, примеры
В случае, если нам надо сложить три и более слагаемых, мы можем использовать метод тождественного преобразования, получивший название группировки слагаемых. Точно такой же метод существует и для умножения, если в примере заданы три множителя и больше. Целью этой статьи является разбор правил группировки в обоих случаях. Все теоретические положения будут проиллюстрированы примерами решений задач.
Что такое группировка слагаемых
Мы можем выполнять группировку как в буквенных, так и в числовых выражениях тогда, когда у нас есть 3 слагаемых и более. Как нужно понимать этот термин?
Группировка слагаемых основана на совместном рассмотрении нескольких слагаемых в исходной сумме. Иначе говоря, это объединение нескольких слагаемых в одну группу.
Основное правило группировки слагаемых звучит так:
При выполнении группировки мы сначала переставляем слагаемые в исходной сумме таким образом, чтобы слагаемые одной группы были рядом, после чего заключаем их в скобки.
На чем базируется данное правило? В его основе лежат переместительное и сочетательное свойство сложения.
Разберем несколько примеров.
Допустим, у нас есть сумма 3 — х слагаемых 3 + 2 + 1 , и нам нужно сгруппировать первое слагаемое со вторым. Перестановка в данном случае не потребуется, поскольку нужные слагаемые и так стоят рядом. Нам надо только добавить скобки в нужном месте: ( 3 + 2 ) + 1 . Вот и вся необходимая группировка, после которой можно переходить к вычислениям.
Возьмем пример чуть сложнее.
Итак, мы имеем сумму 4 — х слагаемых 1 + 8 + 2 + 9 . Осуществим группировку в данном выражении, объединив первое и последнее, а также второе и третье слагаемое. Для этого нам надо переставить их так, чтобы нужные слагаемые расположились рядом друг с другом: 1 + 9 + 8 + 2 . Все, что нам нужно сделать теперь, это добавить скобки в нужных местах: ( 1 + 9 ) + ( 8 + 2 ) .
Точно так же мы действуем, если вместо числового выражения задано выражение с переменными. Так, если в условии стоит сумма вида x + y 3 + 3 · y 2 + 2 · x 2 + y + 12 , то можно сделать группировку сначала всех слагаемых с x , а потом всех с y . В итоге у нас получится выражение вида ( x + 2 · x 2 ) + ( y 3 + 3 · y 2 + y ) + 12 .
В целом группировка слагаемых– несложное действие. Некоторая трудность может быть в том, чтобы найти в исходном выражении саму сумму и отдельные слагаемые, из которых она состоит, особенно если выражение длинное и громоздкое. После нахождения слагаемых сгруппировать их будет легко.
К примеру, в выражении x + 1 · 1 x — 2 + x 2 + x + 1 4 + 3 · x — 2 3 можно найти три слагаемых: x + 1 · 1 x — 2 , x 2 + x + 1 4 и 3 · x — 2 3 .
После нахождения всех элементов можно объединить в группу первое и третье слагаемое и получить следующее выражение:
x + 1 · 1 x — 2 + 3 · x — 2 3 + x 2 + x + 1 4
Также три слагаемых можно выделить и в дроби x 2 + x + 1 4 . Они расположены под знаком корня. Для них тоже можно провести группировку.
Метод группировки необходим для рационального вычисления значений выражений. Кроме того, он широко используется для упрощения и многих других задач разной степени сложности.
Например, если нам надо найти значение выражения 1 3 + 2 7 + 2 3 + 3 7 , то удобно будет воспользоваться группировкой и объединить дроби с одинаковыми знаменателями. Так вычисление станет проще и быстрее:
1 3 + 2 7 + 2 3 + 3 7 = 1 3 + 2 3 + 2 7 + 3 7 = 1 + 5 7 = 1 5 7
Один из способов разложения многочлена на отдельные множители также основан на группировке слагаемых.
Что такое группировка множителей
Такая группировка проводится точно таким же образом, как и при сложении, единственная разница в том, что работать предстоит не с суммами, а с произведениями. Она основана на переместительном и сочетательном свойствах умножения.
Группировка множителей – это объединение в одну группу нескольких множителей.
Процесс вычисления в данном случае проводится так же: сначала мы переставляем нужные множители так, чтобы они оказались рядом, а потом расставляем скобки.
Например, возьмем произведение 3 · a · 7 · b и выполним группировку отдельно буквенных и числовых множителей. Сначала переставим их, чтобы нужные множители стояли рядом, а затем выделим их скобками. В итоге у нас получится выражение вида ( 3 · 7 ) · ( a · b ) .
Источник
Способ группировки
Кроме вынесения общего множителя за скобки существует еще один способ разложения многочлена на множители — способ группировки.
Этот способ разложения на множители считается более сложным, поэтому перед его изучением, убедитесь, что вы уверенно выносите общий множитель за скобки.
Чтобы разложить многочлен на множители способом группировки, необходимо сделать следующее.
- Подчеркнуть повторяющиеся буквы и записать друг за другом одночлены с одинаковыми буквенными множителями.
- Вынести общий множитель за скобки у каждой группы одночленов.
- Вынести полученный общий многочлен за скобки.
Рассмотрим пример разложения многочлена на множители способом группировки.
- Подчеркнем повторяющиеся буквенные множители в одночленах.
Примеры способа группировки
Группировать одночлены можно по-разному. При правильной группировке должен появиться общий многочлен .
Рассмотрим пример. Требуется разложить многочлен на множители, используя способ группировки.
Первый способ
Обратим внимание, что в двух одночленах повторяется « y 2 » и « z 2 ». Подчеркнем повторяющиеся одночлены и запишем их друг за другом. Затем вынесем общий множитель у каждой группы одночленов.
48x z 2 + 32x y 2 − 15 z 2 − 10 y 2 = 48x z 2 − 15 z 2 + 32x y 2 − 10 y 2 = 3z 2 (16x − 5) + 2y 2 (16x − 5) =
= (16x − 5)(3z 2 + 2y 2 )
Второй способ
Запишем пример еще раз. Теперь обратим внимание, что в первых двух одночленах повторяется « x ». Подчеркнем повторяющиеся одночлены. Вынесем общий множитель у каждой группы одночленов.
48 x z 2 + 32 x y 2 − 15z 2 − 10y 2 = 16x(3z 2 + 2y 2 ) − 5(3z 2 + 2y 2 ) = (3z 2 + 2y 2 )(16x − 5)
В итоге получился такой же ответ, как и при первом способе.
Рассмотрим еще один пример разложения многочлена способом группировки.
- 4q(p − 1) + p − 1 = 4q(p − 1) + (p − 1) = 4q(p − 1) + 1 · (p − 1) = (p − 1)(4q + 1)
В этом примере следует отметить, что для вынесения общего многочлена мы добавили умножение на 1 к многочлену (p − 1) , что не изменяет результат умножения.
Это помогает понять, что останется во второй скобке после вынесения общего многочлена.
Смена знаков в скобках
Иногда для вынесения общего многочлена требуется сменить все знаки одночленов в скобках на противоположные.
Для этого за скобки выносится знак « − », а в скобках у всех одночленов меняются знаки на противоположные.
2ab 2 − 3x + 1 = −( − 2ab 2 + 3x − 1)
Рассмотрим пример способа группировки, где для вынесения общего многочлена, нам потрубуется выполнить смену знаков в скобках.
- 2m(m − n) + n − m = − 2m( − m + n) + (n − m) = −2m(n − m) + 1 · (n − m) =
= (n − m)(−2m + 1)
Источник
Лекция 5 Статистическая сводка и группировка
Статистическая сводка и группировка. В результате проведения статистического наблюдения получают данные о признаках каждой обследованной единицы статистической совокупности. Однако эти массивы данных, содержащие подробные сведения о каждой единице совокупности, собирают не для того, чтобы получить характеристики каждой из них, а с целью изучить совокупность в целом, выявить ее характерные группы и закономерности. Для этого необходимо обобщить и систематизировать сведения, полученные в ходе статистического наблюдения.
Обобщение и систематизация первичных статистических данных – это самостоятельный этап статистического исследования, основная задача которого получить полную и всестороннюю характеристику как совокупности в целом, так и отдельных ее частей и представить полученную информацию об изучаемой совокупности в наиболее удобной для пользователей форме. В статистической практике данный этап статистического исследования называют этапом сводки и группировки статистических данных.
Статистическая сводка
Сводка – это научная обработка первичных данных с целью получения обобщенных характеристик изучаемого социально-экономического явления по ряду существенных для него признаков с целью выявления типичных черт и закономерностей, присущих изучаемому явлению в целом.
По глубине и точности обработки материала различают простую сводку и сложную сводку.
Простая сводка – это операция по подсчету общих итогов по совокупности единиц наблюдения и оформление этого материала в статистических таблицах.
Сложная сводка – это комплекс последовательных операций, включающих группировку полученных при наблюдении материалов, составление системы показателей для характеристики типичных групп и подгрупп изучаемой совокупности явлений, подсчет числа единиц и итогов по каждой группе и подгруппе, и по всему объекту и представление результатов в виде статистических таблиц.
Этапы проведение сводки
- Выбор группировочного признака.
- Определение порядка формирования групп.
- Разработка системы статистических показателей для характеристики групп и объекта в целом
- Разработка макетов статистических таблиц для представления результатов сводки.
Статистическая группировка
Группировка – разбиение общей совокупности единиц объекта наблюдения по одному или нескольким существенным признакам на однородные группы, различающиеся между собой в количественном и качественном отношении и позволяющие выделить социально-экономические типы, изучить структуру совокупности и проанализировать связи между отдельными признаками.
Задачи, решаемые с помощью метода группировок:
- выделение социально-экономических типов явлений;
- изучение структуры явления и структурных сдвигов, происходящих в нем;
- выявление взаимосвязи и взаимозависимости между явлениями.
Виды группировок. В соответствии с познавательными задачами, решаемыми в ходе построения статистических группировок, различают следующие их виды: типологические, структурные, аналитические.
Типологическая группировка – это разбиение разнородной совокупности единиц наблюдения на отдельные качественно однородные группы и выявление на этой основе социально-экономических типов явлений. При построении группировки этого вида основное внимание должно быть уделено идентификации типов и выбору группировочного признака. Решение вопроса об основании группировки должно осуществляться на основе анализа сущности изучаемого социально-экономического явления.
Структурная группировка – предназначена для изучения состава однородной совокупности по какому-либо варьирующему признаку, а также структуры и структурных сдвигов, происходящих в нем.
Аналитическая группировка – выявляет взаимосвязи между изучаемыми явлениями и признаками, их характеризующими.
. В статистике при изучении связей социально-экономических явлений признаки подразделяют на факторные и результативные.
Факторные признаки, под их воздействием изменяются результативные признаки. Взаимосвязь проявляется в том, что с возрастанием или убыванием значения факторного признака систематически возрастает или убывает значение признака результативного и наоборот. .
Особенности построения аналитической группировки:
- единицы статистической совокупности группируются по факторному признаку;
- каждая выделенная группа характеризуется средними величинами результативного признака.
По способу построения группировки бывают простые и комбинационные.
Простая группировка – группы образованы только по одному признаку.
Комбинационная группировка – разбиение совокупности на группы производится по двум и более признакам, взятым в сочетании (комбинации).
Сначала группы формируются по одному признаку, затем группы делятся на подгруппы по другому признаку, а эти в свою очередь делятся по третьему и так далее. Таким образом, комбинационные группировки дают возможность изучить единицы совокупности одновременно по нескольким взаимосвязанным признакам.
При построении комбинационной группировки возникает вопрос о последовательности разбиения единиц объекта по признакам. Как правило, рекомендуется сначала производить группировку по атрибутивным признакам, значения которых имеют ярко выраженные качественные различия.
Этапы построения статистических группировок
- Определение группировочного признака.
- Определение размаха вариации.
- Определение числа групп.
- Расчет ширины интервала группировки.
- Определение признаков, которые в комбинации друг с другом будут характеризовать каждую выделенную группу.
При небольшом объеме совокупности (n
Определение числа групп можно осуществить несколькими способами. Формально-математический способ предполагает использование формулы Стерджесса (формула 5.2): (5.2)
где n – число групп; N – число единиц совокупности.
Согласно этой формуле выбор числа групп зависит только от объема изучаемой совокупности.
Применение данной формулы дает хорошие результаты в том случае, если совокупность состоит из большого числа единиц наблюдения (n>50).
Другой способ определения числа групп основан на применении показателя среднего квадратического отклонения (σ). Если величина интервала равна 0,5σ, то совокупность разбивается на 12 групп, а когда величина интервала равна 2/3σ и σ, то совокупность делится, собственно, на 9 и 6 групп. Однако при определении групп данными методами существует большая вероятность получения «пустых» или малочисленных групп, характеристики изучаемого явления на основе которых будут недостаточно типичными для выделенной группы и изучаемой совокупности в целом.
Когда определено число групп, то следует определить интервалы группировки.
Интервал – это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет верхнюю и нижнюю границы или одну из них. Нижней границей интервала называется наименьшее значение признака в интервале. Верхней границей интервала называется наибольшее значение признака в интервале. Величина интервала представляет собой разность между верхней и нижней границами интервала.
Интервалы группировки бывают: равные и неравные; открытые и закрытые.
Ширина равного интервала определяется по (формуле 5.3):
(5.3)
Если максимальные или минимальные значения сильно отличаются от смежных с ними значений вариантов в упорядоченном ряду значений группировочного признака, то для определения величины интервала следует использовать не максимальное или минимальное значения, а значения, несколько превышающие минимум, и несколько меньше, чем максимум.
Полученную по формуле (5.3) величину округляют и она будет являться шириной интервала.
Существуют следующие правила определения ширины интервала.
Если величина интервала, рассчитанная по формуле (5.3) представляет собой величину, которая имеет один знак до запятой (например: 0,67; 1,487; 3,82), то в этом случае полученные значения целесообразно округлить до десятых и их использовать в качестве ширины интервала. В приведенном выше примере это будут соответственно значения: 0,7; 1,5; 3,8.
Если рассчитанная величина интервала имеет две значащие цифры до запятой и несколько после запятой (например, 14,876), то это значение необходимо округлит до целого числа (15).
В случае, когда рассчитанная величина интервала представляет собой трехзначное, четырехзначное и так далее число, то эту величину следует округлить до ближайшего числа, кратного 100 или 50. Например, 652 следует округлить до 650 или до 700.
Если размах вариации признака в совокупности велик и значения признака варьируют неравномерно, то надо использовать группировку с неравными интервалами.
Неравные интервалы могут быть получены в процессе объединения пустых, не содержащих ни одной единицы совокупности, равных интервалов. Это происходит в том случае, если после построения равных интервалов по изучаемому признаку образуются группы, содержащие мало или не содержащие вообще ни одной единицы, т.е. группы, не отражающие определенных типов изучаемого явления по признаку. В этом случае возникает необходимость в увеличении интервалов группировки.
Также неравные интервалы могут быть прогрессивно-возрастающие или прогрессивно-убывающие в арифметической или геометрической прогрессии. Величина интервалов, изменяющихся в арифметической и геометрической прогрессии, определяется следующим образом:hi+1=hi+а,
а – константа: для прогрессивно-возрастающих интервалов имеет знак «+», а при прогрессивно-убывающих – знак «-».
q — константа: для прогрессивно-возрастающих – больше «1»; для прогрессивно-убывающих ‑ меньше «1».
Применение неравных интервалов обусловлено тем, что в первых группах небольшая разница в показателях имеет большое значение, а в последних группах эта разница не существенна.
Например, при построении группировки строительных компаний города по показателю численности работающих, который варьирует от 500 человек до 3500 человек, нецелесообразно рассматривать равные интервалы, т. к. учитываются как малые, так и крупнейшие строительные фирмы города. Поэтому следует образовывать неравные интервалы: 500–1000, 1000–2000, 2000–3500, т.е. величина каждого последующего интервала больше предыдущего на 500 человек и увеличивается в арифметической прогрессии. Выбор исследователя в построении равных или неравных интервалов зависит от степени заполнения каждой выделенной группы, т.е. от числа единиц в них. Если величина интервала существенна и содержит большое число единиц совокупности, то эти интервалы необходимо дробить, а в противном случае – объединять.
Интервалы статистической группировки
Интервалы группировок могут быть закрытыми и открытыми.
Закрытые интервалы – это интервалы, у которых есть и верхняя и нижняя границы.
Открытые интервалы – это интервалы, у которых указана только одна граница: как правило, верхняя – у первого интервала и нижняя – у последнего.
Например, группы страховых компаний по числу работающих в них сотрудников (чел.): до 50, 50–100, 100–150, 150 и более. Применение открытых интервалов целесообразно в тех случаях, когда в совокупности встречается незначительное число единиц наблюдения с очень малыми или очень большими значениями вариантов, которые резко, в несколько раз, отличаются от всех остальных значений изучаемого признака.
Если основанием группировки служит непрерывный признак (например, группы строительных фирм по объему строительно-монтажных работ, выполненных собственными силами (тыс. руб.): 1200–1400, 1400–1600, 1600–1800, 1800–2000), то одно и то же значение признака выступает и верхней и нижней границами двух смежных интервалов. В данном случае объем работ 1400 тыс. руб. составляет верхнюю границу первого интервала и нижнюю границу второго, 1600 тыс. руб. ‑ соответственно второго и третьего и т.д., т.е. верхняя граница i-го интервала равна нижней границе (i+1)-го интервала.
При таком обозначении границ может возникнуть вопрос, в какую группу включать единицы наблюдения, значения признака у которых совпадают с границами интервалов.
Например, во вторую или третью группу должна войти строительная фирма с объемом строительно-монтажных работ 1600 тыс. рублей? Если верхняя граница формируется по принципу «исключительно», то фирма должна быть отнесена к третьей группе, в противном случае – ко второй. Для того, чтобы правильно отнести к той или иной группе единицу совокупности, значение признака которой совпадает с границами интервалов, можно ориентироваться на открытые интервалы (по нашему примеру группы строительных фирм по объему строительно-монтажных работ преобразуются в следующие: до 1400, 1400–1600, 1600–1800, 1800 и более). В данном случае, вопрос отнесения отдельных единиц совокупности, значения которых являются граничными, к той или иной группе решается на основе анализа последнего открытого интервала. Возможны два случая обозначения последнего открытого интервала: 1) 1800 тыс. руб. и более; 2) более 1800 тыс. руб. В первом случае, строительные фирмы с объемом строительно-монтажных работ 1600 тыс. руб. попадут в третью группу; во втором случае – во вторую группу.
Если в основании группировки лежит дискретный признак, то нижняя граница 1-го интервала равна верхней границе i-1-го интервала, увеличенной на 1.
Например, группы строительных фирм по числу занятого персонала (чел.) будут иметь вид: 100–150, 151–200, 201–300.
Строя такую группировку, следует дифференцированно устанавливать границы интервалов для разных отраслей народного хозяйства. Это достигается путем использования группировок со специализированными интервалами.
Специализированные интервалы – применяются дли выделения из совокупности одних и тех же типов по одному и тому же признаку для явлений, находящихся в различных условиях.
При изучении социально-экономических явлений на макроуровне часто применяют группировки, интервалы которых не будут ни прогрессивно-возрастающими, ни прогрессивно-убывающими. Такие интервалы называются произвольными и, как правило, используются при группировке предприятий, например, по уровню рентабельности.
Пример. Далее на примере данных приведенных в табл. 5.1. произведем аналитическую группировку совокупности, включающей 30 банков.
Таблица 5.1 ‑ Совокупность 30 банков Российской Федерации
(на 01.01.19 г., цифры условные)
Номер банка | Капитал, млн. руб. | Активы, млн. руб. | |
1 | 2 | 3 | 4 |
1 | 207,7 | 2,48 | 1,14 |
2 | 200,3 | 2,40 | 1,10 |
3 | 190,2 | 2,28 | 1,05 |
4 | 323,2 | 3,88 | 1,88 |
5 | 247,1 | 2,96 | 1,36 |
6 | 177,7 | 2,12 | 0,97 |
7 | 242,5 | 2,90 | 1,33 |
8 | 182,9 | 2,18 | 0,99 |
9 | 315,6 | 3,78 | 1,73 |
10 | 183,2 | 2,20 | 1,01 |
11 | 320,2 | 3,84 | 1,76 |
12 | 207,3 | 2,48 | 1,14 |
13 | 181,0 | 2,17 | 0,99 |
14 | 172,4 | 2,06 | 0,94 |
15 | 234,3 | 2,81 | 1,29 |
16 | 189,5 | 2,27 | 1,04 |
17 | 187,8 | 2,24 | 1,03 |
18 | 166,9 | 1,99 | 0,91 |
19 | 157,7 | 1,88 | 0,86 |
20 | 168,3 | 2,02 | 0,93 |
21 | 224,4 | 2,69 | 1,23 |
22 | 166,5 | 1,99 | 0,91 |
23 | 198,5 | 2,38 | 1,09 |
24 | 240,4 | 2,88 | 1,32 |
25 | 229,3 | 2,75 | 1,26 |
26 | 175,2 | 2,10 | 0,96 |
27 | 156,0 | 1,87 | 0,86 |
28 | 160,1 | 1,92 | 0,88 |
29 | 178,7 | 2,14 | 0,98 |
30 | 171,6 | 2,05 | 0,94 |
По данным табл.5.1 группировочным (факторным) признаком является капитал, результативным – прибыль. Группировку производим по факторному признаку. Зададим количество групп (условно) – 4, а величину интервала определим по формуле (5.3).
Обозначим границы групп:
1-я группа – 156,0-197,8;
2-я группа – 197,8-239,6;
3-я группа – 239,6-281,4;
4-я группа – 281,4-323,2.
После того, как определен группировочный признак – капитал, задано число групп – 4 и образованы сами группы, необходимо отобрать показатели, которые характеризуют группы, и определить их величины по каждой группе.
Далее показатели, характеризующие банки, разносятся по четырем указанным группам и подсчитываются групповые итоги. Результаты группировки заносятся в таблицу и определяются общие итоги по совокупности единиц наблюдения по каждому показателю.
Таблица 5.2 ‑ Группировка коммерческих банков по величине капитала
Источник