Коэффициент мощности способы его увеличения

Повышение коэффициента мощности в цепях синусоидального тока

Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника. Так для асинхронных двигателей, трансформаторов, сварочных аппаратов и других реактивный ток необходим для создания вращающегося магнитного поля у электрических машин и переменного магнитного потока трансформаторов.

Активная мощность таких потребителей при заданных значениях тока и напряжения зависит от cos φ:

P = UICosφ , I = P / UCosφ

Снижение коэффициента мощности приводит к увеличению тока.

Косинус фи особенно сильно снижается при работе двигателей и трансформаторов вхолостую или при большой недогрузке. Если в сети есть реактивный ток мощность генератора, трансформаторных подстанции и сетей используется не полностью. С уменьшением cos φ значительно возрастают потери энергии на нагрев проводов и катушек электрических аппаратов.

Например, если активная мощность остается постоянной, обеспечивается током 100 А при cos φ =1, то при понижении cos φ до 0,8 и той же мощности сила тока в сети возрастает в 1,25 раза ( I а = I сети х cos φ , I с = I а / cos φ ).

Потери на нагрев проводов сети и обмоток генератора (трансформатора) Pнагр = I 2 сети х Rсети пропорциональны квадрату тока, то есть они возрастают в 1,25 2 = 1,56 раза.

При cos φ = 0,5 сила тока в сети при той же активной мощности равна 100 / 0,5 = 200 А, а потери в сети возрастают в 4 раза (!). Возрастают потери напряжения в сети, что нарушает нормальную работу других потребителей.

Счетчик потребителя во всех случаях отсчитывает одно и то же количество потребляемой активной энергии в единицу времени, но в последнем случае генератор подает в сеть силу тока, в 2 раза большую, чем в первом. Нагрузка же генератора (тепловой режим) определяется не активной мощностью потребителей, а полной мощностью в киловольт-амперах, то есть произведением напряжения на силу тока, протекающего по обмоткам.

Если обозначить сопротивление проводов линии R л, то потери мощности в ней можно определить так:

Таким образом, чем выше потребителя, тем меньше потери мощности в линии и дешевле передача электроэнергии.

Коэффициент мощности показывает, как используется номинальная мощность источника. Так, для питания приемника 1000 кВт при φ = 0,5 мощность генератора должна быть S = P / cos φ = 1000 / 0 ,5 = 2000 кВА, а при cosφ = 1 S = 1000 кВА.

Следовательно, повышение коэффициента мощности увеличивает степень использования мощности генераторов.

Для повышения коэффициента мощности (cos φ ) электрических установок применяют компенсацию реактивной мощности .

Увеличения коэффициента мощности (уменьшения угла φ — сдвига фаз тока и напряжения) можно добиться следующими способами:

1) заменой мало загруженных двигателей двигателями меньшей мощности,

2) понижением напряжения

3) выключением двигателей и трансформаторов, работающих на холостом ходу,

4) включением в сеть специальных компенсирующих устройств, являющихся генераторами опережающего (емкостного) тока.

На мощных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы — синхронные перевозбужденные электродвигатели.

Чтобы повысить экономичность энергетических установок наиболее часто используют батареи конденсаторов , подключаемые параллельно индуктивной нагрузке (рис. 2 а).

Читайте также:  Способы как одевать шапку

Рис. 2 Включение конденсаторов для компенсации реактивной мощности: а — схема, б, в — векторные диаграммы

Для компенсации cos φ в электрических установках до нескольких сотен кВА применяют косинусные конденсаторы. Их выпускают на напряжение от 0,22 до 10 кВ.

Емкость конденсатора, необходимую для повышения cosφ от существующего значения cosφ 1 до требуемого cosφ 2 , можно определить по диаграмме (рис. 2 б, в).

При построении векторной диаграммы в качестве исходного вектора принят вектор напряжения источника. Если нагрузка представляет собой индуктивный характер, то вектор тока I 1 отстает от вектора напряжения на угол φ 1 I а совпадает по направлению с напряжением, реактивная составляющая тока I р отстает от него на 90° (рис. 2 б).

После подключения к потребителю батареи конденсаторов ток I определяется как геометрическая сумма векторов I 1 и I c . При этом вектор емкостного тока опережает вектор напряжения на 90° (рис. 2, в). Из векторной диаграммы видно, что φ 2 1 , т.е. после включения конденсатора коэффициент мощности повышается от cos φ1 до cos φ2

Емкость конденсатора можно рассчитать при помощи векторной диаграммы токов (рис. 2 в) Ic = I р1 — I р = I а tg φ1 — I а tg φ 2 = ωCU

Учитывая, что P = UI а , запишем емкость конденсатора С = (I а / ωU ) х ( tg φ1 — tg φ 2 ) = (P / ωU 2 ) х ( tg φ1 — tg φ2 ) .

На практике обычно коэффициент мощности повышают не до 1,0, а до 0,90 — 0,95, так как полная компенсация требует дополнительной установки конденсаторов, что часто экономически не оправдано.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

КОЭФФИЦИЕНТ МОЩНОСТИ И СПОСОБЫ ЕГО ПОВЫШЕНИЯ

Площади поперечного сечения приводов линий электропередачи и электрических сетей, обмоток электрических машин, трансформаторов, электротехнических аппаратов и приборов выбираются, исходя из нагревания, по значению тока в них, который при заданном напряжении переменного тока прямо пропорционален полной мощности S. А энергия, преобразуемая из электрической в другие виды (в механическую, тепловую и т. д.) и используемая в большей части для практических целей, пропорциональна активной энергии и соответствующей ей активной мощности Р.

Как известно, между указанными мощностями и реактивной мощностью существуют соотношения

P = S cos φ; .

Входящий в первое выражение cos φ называется коэффициентом мощности и показывает, какую часть полной мощности составляет активная мощность: cos φ = P/S= Р .

Считая, что активная мощность установки, значение которой зависит в основном от мощности приемников, остается постоянной, выясним, к чему приведет увеличение коэффициента мощности установки.

Как следует из приведенных формул, при увеличении cos φ мощность S уменьшается. При Р = const это может происходить лишь за счет уменьшения реактивной мощности Q установки. Снижение мощности S приводит к уменьшению линейного тока Iл . Последнее будет сопровождаться уменьшением потерь напряжения и мощности в сопротивлениях проводов сети, обмотках трансформаторов и генераторов.

Очевидно, при уменьшении тока площади поперечного сечения названных элементов могут быть также уменьшены. В отношении трансформаторов и генераторов это приводит к уменьшению габаритных размеров, расхода дефицитных материалов на изготовление, массы, номинальной мощности и стоимости.

Читайте также:  Непрямой способ нанесения состава для химической завивки

В действующей установке повышение cos φ при существующей площади поперечного сечения проводов позволит увеличить число приемников, которые могут быть подключены к данной сети.

Таким образом, повышение коэффициента мощности дает определенные выгоды во многих отношениях, а поэтому имеет большое народнохозяйственное значение.

Большая часть элементов электрических цепей переменного тока потребляет кроме активной мощности также индуктивную мощность. К ним относятся в первую очередь наиболее распространенные в народном хозяйстве асинхронные электродвигатели. Значительная часть индуктивной мощности потребляется трансформаторами, широко используемыми вразличных установках. Индуктивная мощность потребляется также различными электромагнитными аппаратами, такими, например, как электромагниты, контакторы и магнитные пускатели, реле и т. д.

Для уменьшения индуктивной мощности и увеличения тем самым cos φ необходимо прежде всего:

выбирать правильно двигатели по мощности, так как необоснованное завышение мощности приведет к их работе с недогрузкой, а при этом, как правило, cos φ понижается;

заменять двигатели, работающие с недогрузкой, двигателями меньшей мощности;

сокращать по возможности времена работы двигателей и трансформаторов вхолостую.

Если все же cos φ оказывается недостаточно высоким, прибегают часто к его искусственному повышению. Для этой цели подключают к трехфазной сети компенсирующие устройства, к которым относятся батареи конденсаторов и трехфазные синхронные компенсаторы (см. гл. 11). Последние применяются реже. Батарея конденсаторов соединяется обычно треугольником, как показано на рис. 3.18, а. Батарея конденсаторов потребляет емкостную мощность, которая частично компенсирует индуктивную мощность установки, в результате чего реактивная мощность уменьшается, а коэффициент мощности повышается. Естественно, что cos φ самих приемников при этом остается прежним.

Рис. 3.18. Схема и векторная диаграмма к примеру 3.5

Чтобы уменьшить ток проводов сети, батарею конденсаторов устанавливают по возможности вблизи приемников.

Пример 3.5. К трехфазной сети рис. 3.18, а с линейными напряжениями Uл = 220В подключены два трехфазных приемника. Активная мощность и коэффициент мощности первого приемника P1 = 10 кВт, cos φ1 = 0,7. Фазные сопротивления второго приемника rф = 6 Ом,

xLф = 8 Ом, нагрузка симметричная.

Определить токи, мощности и коэффициент мощности cos φ установки из двух приемников. Найти мощность, токи и емкость батареи конденсаторов, если требуется повысить коэффициент мощности до cos φ’ = 0,95. Определить токи и мощности установки из двух приемников и батареи конденсаторов.

Решение. Полная и реактивная мощности первого приемника

S1 = P1/cos φ1 = 14,3 кВ•А, Q1 = ≈ 10,2 квар.

Полное сопротивление и ток фазы второго приемника

z2 = = 10 Ом; Iф2 = Uф /z2 = Uл /z2 = 22 А.

Активная и реактивная мощности второго приемника

Активная, реактивная и полная мощности установки, состоящей из двух преемников.

≈ 28,7 кВ•А.

Линейный ток и коэффициент мощности установки из двух приемников

Iл = Ia = S Uл ≈ 75,5 A; cos φ = P/S ≈ 0,65.

Мощности установки из приемников и батареи конденсаторов

Р’ = Р = 18,7 кВт; S’ = P/cos φ’ = 19,68 кВ•А;

Q’ = = 6,13 квар.

Линейные токи установки из приемников и батареи конденсаторов, мощность и линейные токи батареи конденсаторов

I’л = I’a = S Uл = 51,7 A; Qк = Q — Q’ =15,67 квар;

Iк.л = Qк / Uл = 41,2 А.

Читайте также:  Способы выдачи кредита банком

Фазные токи и сопротивление фазы батареи конденсаторов

Iк.л/ = 20,8 А; xк.ф = Uф /Iк.ф = Uл /Iк.ф = 10,58 Ом.

Емкость одной фазы и всей батареи конденсаторов

Векторная диаграмма цепи рис, 3.18, а приведена на рис. 3.18, б. На диаграмме показаны только те токи, которые определяют ток I’a (т. е. Ia и Iкa), а также токи, определяющие ток Iкa

Источник

Как повысить коэффициент мощности в цепях синусоидального тока

Влияние реактивного тока

Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника. Так дл асинхронных двигателей, трансформаторов, сварочных аппаратов и других реактивный ток необходим для создания вращающегося магнитного поля у электрических машин и переменного магнитного потока трансформаторов.Активная мощность таких потребителей пи заданных значениях тока и напряжения зависит от :

Снижение коэффициента мощности приводит к увеличению тока.

особенно сильно снижается при работе двигателей и трансформаторов вхолостую или при большой недогрузке. Если в сети есть реактивный ток, мощность генератора, трансформаторных подстанции и сетей используется не полностью.

Внимание! С уменьшением значительно возрастают потери энергии на нагрев проводов и катушек электрических аппаратов.

Например, если активная мощность остается постоянной, обеспечивается током 100 А при =1, то при понижении до 0,8 и той же мощности сила тока в сети возрастает в 1,25 раза.

Потери на нагрев проводов сети и обмоток генератора (трансформатора) Рнагр=I 2 сети хRсети пропорциальны квадрату тока, то есть они возрастают в 1,25 2 =1,56 раза.

При =0,5 сила тока в сети при той же активной мощности равна 100/0,5=200 А, а потери в сети возрастают в 4 раза. Возрастают потери напряжения в сети, что нарушает нормальную работу других потребителей.

Счетчик потребителя во всех случаях отсчитывает одно и то же количество потребляемой активной энергии в единицу времени, но в последнем случае генератор подает в сеть силу тока, а в 2 раза большую, чем в первом. Нагрузка же генератора (тепловой режим) определяется не активной мощностью потребителей, а полной мощностью в киловольт-амперах, то есть произведением напряжения на силу тока, протекающего по обмоткам.

Если обозначить сопротивление проводов линии Rл, то потери мощности в ней можно определить так:

Таким образом, чем выше коэффициент мощности потребителя, тем меньше потери мощности в линии и дешевле передача электроэнергии.

Коэффициент мощности – это величина, которая показывает, как используется номинальная мощность источника.

Так, для питания приемника 1000кВт при =0,5 мощность генератора должна быть S=P/ =1000/0,5=2000кВА, а при =1 S=1000 кВА.

Следовательно, повышение коэффициента мощности увеличивает степень использования мощности генераторов.

Для повышения коэффициента мощности электрических установок применяют компенсацию реактивной мощности.

Увеличения коэффициента мощности (уменьшения угла — сдвига фаз тока и напряжения) можно добиться следующими способами:

— заменой мало загруженных двигателей двигателями меньшей мощности;

— выключением двигателей и трансформаторов, работающих на холостом ходу;

— включением в сеть специальных компенсирующих устройств, являющихся генераторами опережающего (емкостного) тока.

На мощных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы – синхронные перевозбужденные электродвигатели.

Источник

Оцените статью
Разные способы