Кодирование растровой информации способы

Растровое кодирование

Вы будете перенаправлены на Автор24

Растры, пиксели, дискретизация, разрешение

Как и все виды информации, изображения в компьютере закодированы в виде двоичных последовательностей. Используют два принципиально разных метода кодирования, каждый из которых имеет свои достоинства и недостатки.

И линия, и область состоят из бесконечного числа точек. Цвет каждой из этих точек нам нужно закодировать. Если их бесконечно много, мы сразу приходим к выводу, что для этого нужно бесконечно много памяти. Поэтому «поточечным» способом изображение закодировать не удастся. Однако, эту все-таки идею можно использовать.

Начнем с черно-белого рисунка. Представим себе, что на изображение ромба наложена сетка, которая разбивает его на квадратики. Такая сетка называется растром. Теперь для каждого квадратика определим цвет (черный или белый). Для тех квадратиков, в которых часть оказалась закрашена черным цветом, а часть белым, выберем цвет в зависимости от того, какая часть (черная или белая) больше.

У нас получился так называемый растровый рисунок, состоящий из квадратиков-пикселей.

Пиксель (англ. pixel = picture element, элемент рисунка) – это наименьший элемент рисунка, для которого можно задать свой цвет. Разбив «обычный» рисунок на квадратики, мы выполнили его дискретизацию – разбили единый объект на отдельные элементы. Действительно, у нас был единый и неделимый рисунок – изображение ромба. В результаты мы получили дискретный объект – набор пикселей.

Двоичный код для черно-белого рисунка, полученного в результате дискретизации можно построить следующим образом:

Готовые работы на аналогичную тему

  • заменяем белые пиксели нулями, а черные – единицами;
  • выписываем строки полученной таблицы одну за другой.

Покажем это на простом примере:

Ширина этого рисунка – $8$ пикселей, поэтому каждая строчка таблицы состоит из $8$ двоичных разрядов – битов. Чтобы не писать очень длинную цепочку нулей и единиц, удобно использовать шестнадцатеричную систему счисления, закодировав $4$ соседних бита (тетраду) одной шестнадцатеричной цифрой.

Например, для первой строки получаем код $1A_<16>$:

а для всего рисунка: $1A2642FF425A5A7E_<16>$.

Очень важно понять, что мы приобрели и что потеряли в результате дискретизации. Самое важное – мы смогли закодировать рисунок в двоичном коде. Однако при этом рисунок исказился — вместо ромба мы получили набор квадратиков. Причина искажения в том, что в некоторых квадратиках части исходного рисунка были закрашены разными цветами, а в закодированном изображении каждый пиксель обязательно имеет один цвет. Таким образом, часть исходной информации при кодировании была потеряна. Это проявится, например, при увеличении рисунка — квадратики увеличиваются, и рисунок еще больше искажается. Чтобы уменьшить потери информации, нужно уменьшать размер пикселя, то есть увеличивать разрешение.

Разрешение – это количество пикселей, приходящихся на дюйм размера изображения.

Разрешение обычно измеряется в пикселях на дюйм (используется английское обозначение $ppi$ = pixels per inch). Например, разрешение $254$ $ppi$ означает, что на дюйм ($25,4$ мм) приходится $254$ пикселя, так что каждый пиксель «содержит» квадрат исходного изображения размером $0,1×0,1$ мм. Чем больше разрешение, тем точнее кодируется рисунок (меньше информации теряется), однако одновременно растет и объем файла.

Кодирование цвета

Что делать, если рисунок цветной? В этом случае для кодирования цвета пикселя уже не обойтись одним битом. Например, в показанном на рисунке изображении российского флага $4$ цвета: черный, синий, красный и белый. Для кодирования одного из четырех вариантов нужно $2$ бита, поэтому код каждого цвета (и код каждого пикселя) будет состоять из двух бит. Пусть $00$ обозначает черный цвет, $01$ – красный, $10$ – синий и $11$ – белый. Тогда получаем такую таблицу:

Проблема только в том, что при выводе на экран нужно как-то определить, какой цвет соответствует тому или другому коду. То есть информацию о цвете нужно выразить в виде числа (или набора чисел).

Человек воспринимает свет как множество электромагнитных волн. Определенная длина волны соответствуют некоторому цвету. Например, волны длиной $500-565$ нм – это зеленый цвет. Так называемый «белый» свет на самом деле представляет собой смесь волн, длины которых охватывают весь видимый диапазон.

Согласно современному представлению о цветном зрении (теории Юнга-Гельмгольца), глаз человека содержит чувствительные элементы трех типов. Каждый из них воспринимает весь поток света, но первые наиболее чувствительны в области красного цвета, вторые – области зеленого, а третьи – в области синего цвета. Цвет – это результат возбуждения всех трех типов рецепторов. Поэтому считается, что любой цвет (то есть ощущения человека, воспринимающего волны определенной длины) можно имитировать, используя только три световых луча (красный, зеленый и синий) разной яркости. Следовательно, любой цвет приближенно раскладывается на три составляющих – красную, зеленую и синюю. Меняя силу этих составляющих, можно составить любые цвета. Эта модель цвета получила название RGB по начальным буквам английских слов red (красный), green (зеленый) и blue (синий).

В модели RBG яркость каждой составляющей (или, как говорят, каждого канала) чаще всего кодируется целым числом от $0$ до $255$. При этом код цвета – это тройка чисел (R,G,B), яркости отдельных каналов. Цвет ($0,0,0$) – это черный цвет, а ($255,255,255$) – белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого.

Читайте также:  Способ относительных показателей коэффициентов

Чтобы сделать светло-красный (розовый) цвет, нужно в красном цвете ($255,0,0$) одинаково увеличить яркость зеленого и синего каналов, например, цвет ($255, 150, 150$) – это розовый. Равномерное уменьшение яркости всех каналов делает темный цвет, например, цвет с кодом ($100,0,0$) – тёмно-красный.

Всего есть по $256$ вариантов яркости каждого из трех цветов. Это позволяет закодировать $256^3= 16 777 216$ оттенков, что более чем достаточно для человека. Так как $256 = 2^8$, каждая из трех составляющих занимает в памяти $8$ бит или $1$ байт, а вся информация о каком-то цвете – $24$ бита (или $3$ байта). Эта величина называется глубиной цвета.

Глубина цвета – это количество бит, используемое для кодирования цвета пикселя.

$24$-битное кодирование цвета часто называют режимом истинного цвета (англ. True Color – истинный цвет). Для вычисления объема рисунка в байтах при таком кодировании нужно определить общее количество пикселей (перемножить ширину и высоту) и умножить результат на $3$, так как цвет каждого пикселя кодируется тремя байтами. Например, рисунок размером $20×30$ пикселей, закодированный в режиме истинного цвета, будет занимать $20×30×3 = 1800$ байт.

Кроме режима истинного цвета используется также $16$-битное кодирование (англ. High Color – «высокий» цвет), когда на красную и синюю составляющую отводится по $5$ бит, а на зеленую, к которой человеческий глаз более чувствителен – $6$ бит. В режиме High Color можно закодировать $2^ <16>= 65 536$ различных цветов. В мобильных телефонах $12$-битное кодирование цвета ($4$ бита на канал, $4096$ цветов).

Кодирование с палитрой

Как правило, чем меньше цветов используется, тем больше будет искажаться цветное изображение. Таким образом, при кодировании цвета тоже есть неизбежная потеря информации, которая «добавляется» к потерям, вызванным дискретизацией. Очень часто (например, в схемах, диаграммах и чертежах) количество цветов в изображении невелико (не более $256$). В этом случае применяют кодирование с палитрой.

Цветовая палитра – это таблица, в которой каждому цвету, заданному в виде составляющих в модели RGB, сопоставляется числовой код.

Кодирование с палитрой выполняется следующим образом:

  • выбираем количество цветов $N$ (как правило, не более $256$);
  • из палитры истинного цвета ($16 777 216$ цветов) выбираем любые $N$ цветов и для каждого из них находим составляющие в модели RGB;
  • каждому из цветов присваиваем номер (код) от $0$ до $N–1$;
  • составляем палитру, записывая сначала RGB-составляющие цвета, имеющего код $0$, затем составляющие цвета с кодом $1$ и т.д.

Цвет каждого пикселя кодируется не в виде значений RGB-составляющих, а как номер цвета в палитре. Например, при кодировании изображения российского флага (см. выше) были выбраны $4$ цвета:

  • черный: RGB-код ($0,0,0$); двоичный код $002$;
  • красный: RGB-код ($255,0,0$); двоичный код $012$;
  • синий: RGB-код ($0,0,255$); двоичный код $102$;
  • белый: RGB-код ($255,255,255$); двоичный код $112$.

Поэтому палитра, которая обычно записывается в специальную служебную область в начале файла (ее называют заголовком файла), представляет собой четыре трехбайтных блока:

Код каждого пикселя занимает всего два бита.

Палитры с количеством цветом более $256$ на практике не используются.

Достоинства и недостатки растрового кодирования

Растровое кодирование имеет достоинства:

  • универсальный метод (можно закодировать любое изображение);
  • единственный метод для кодирования и обработки размытых изображений, не имеющих четких границ, например, фотографий.

И недостатки:

  • при дискретизации всегда есть потеря информации;
  • при изменении размеров изображения искажается цвет и форма объектов на рисунке, поскольку при увеличении размеров надо как-то восстановить недостающие пиксели, а при уменьшении – заменить несколько пикселей одним;
  • размер файла не зависит от сложности изображения, а определяется только разрешением и глубиной цвета.

Как правило, растровые рисунки имеют большой объем.

Источник

Кодирование растровой информации способы

Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.

Компьютерная графика — область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств.

Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений — от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации.

Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.

История компьютерной графики

Результатами расчетов на первых компьютерах являлись длинные колонки чисел, напечатанных на бумаге. Для того чтобы осознать полученные результаты, человек брал бума­гу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций . Иначе говоря, человек вручную производил графическую обработку результатов вычислений. В графическом виде такие результаты становятся более наглядными и понятными .

Читайте также:  Эффералган способ применения суспензия

Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) по­лучались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудря­лись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.

Рис. 1 Символьная печать.

Затем появились специальные устройства для графиче­ского вывода на бумагу — графопостроители (другое на­звание — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображе­ния: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.

Настоящая революция в компьютерной графике про­изошла с появлением графических дисплеев. На экране гра­фического дисплея стало возможным получать рисунки, чер­тежи в таком же виде, как на бумаге с помощью каранда­шей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Су­ществуют принтеры цветной печати, дающие качество ри­сунков на уровне фотографии.

Представление графической информации в компьютере

Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.

Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.

Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.

Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.

При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100×100 точек требуется 10000 бит.

Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).

Информационный объём такого изображения увеличивается в три раза: V = 30000бит.

Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).

Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.

Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).

Описание цвета пикселя является кодом цвета.

Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.

Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.

Чем больше глубина цвета, тем больше объем графического файла.

Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти.

Каково максимально возможное число цветов в палитре изображения?

Решение . Число точек изображения равно 32 ⋅ 3 2 = 1024. Мы знаем, что 512 байтов = 512 ⋅ 8=4096 бит. Найдём глубину цвета 4096÷1024=4. Число цветов равно 24 = 16.

Цвет на Web-страницах кодируется в виде RGB-кода в шестнадцатеричной системе: #RRGGBB, где RR, GGи BB — яркости красного, зеленого и синего, записанные в виде двух шестнадцатеричных цифр; это позволяет закодировать 256 значений от 0 (0016) до 255 (FF16) для каждой составляющей.

При обозначении цветов в HTML-документах вначале ставят знак номера #.

В HTML: #FF0000 —интенсивно красный цвет, #00FF00 — зелёный цвет, #0000FF — синий цвет. Отсутствие цветов (#000000) даёт чёрный цвет, а самое интенсивное сочетание всех трёх каналов (#FFFFFF) даёт белый цвет.

FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.

Чтобы получить светлый оттенок какого-то «чистого» цвета, нужно одинаково увеличить нулевые составляющие; например, чтобы получить светло-красный цвет, нужно сделать максимальной красную составляющую и, кроме этого, одинаково увеличить остальные — синюю и зелёную: #FF9999 (сравните с красным: #FF0000).

Чтобы получить тёмный оттенок чистого цвета, нужно одинаково уменьшить все составляющие, например, #660066 — это тёмно-фиолетовый цвет (сравните с фиолетовым #FF00FF).

Заметим, что если старший бит в коде (первая, третья или пятая цифра) находится в диапазоне от 0 до 3, то можно считать, что эта цветовая компонента отсутствует в цвете, то есть #0F0F0F — это чёрный цвет.

Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.

Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.

Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.

Читайте также:  Быстрее лани способ связи

Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:

— координаты центра окружности;

— значение радиуса r;

— цвет заполнения (если окружность не прозрачная);

— цвет и толщина контура (в случае наличия контура).

Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.

Кодирование графической информации

Графическую информацию можно представлять в двух формах: аналоговой и цифровой.

Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.

Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.

Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в цифровую. Этот процесс называется «кодирование», поскольку каждому элементу назначается конкретное значение в форме двоичного кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества цветных фрагментов (метод мозаики).

Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.

Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.

Современная компьютерная графика

Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов науч­ных исследований, графическая обработка результатов рас­четов, проведение вычислительных экспериментов с нагляд­ным представлением их результатов (Рис. 6).

Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.

Деловая графика. Эта область компьютерной графики предназначена для со­здания иллюстраций, часто используемых в работе различ­ных учреждений.

Плановые показатели, отчетная докумен­тация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные ма­териалы (Рис. 7).

Рис. 7 Графики, круговые и столбчатые диаграммы.

Программные средства деловой графики обычно включа­ются в состав табличных процессоров (электронных таблиц).

Плановые показатели, отчетная докумен­тация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные ма­териалы (Рис. 7).

Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной гра­фики является обязательным элементом систем автомати­зации проектирования (САПР). Графика в САПР исполь­зуется для подготовки технических чертежей проектируе­мых устройств (Рис. 8).

Рис. 8. Графика в САПР.

Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наибо­лее удачной компоновки деталей, прогнозировать последст­вия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плос­кие изображения (проекции, сечения) и пространственные, трехмерные, изображения.

Иллюстративная графика. Программные средства иллюстративной графики позволя­ют человеку использовать компьютер для произвольного ри­сования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, лине­ек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. По­этому они относятся к прикладному программному обеспече­нию общего назначения.

Простейшие программные средства иллюстративной гра­фики называются графическими редакторами.

Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая попу­лярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и мно­гое другое.

Графические пакеты для этих целей требуют больших ре­сурсов компьютера по быстродействию и памяти. Отличи­тельной особенностью этого класса графических пакетов яв­ляется возможность создания реалистических (очень близ­ких к естественным) изображений, а также «движущихся картинок» (рис. 9).

Для создания реалистических изображений в графиче­ских пакетах этой категории используется сложный матема­тический аппарат.

Рис. 9 Художественная графика.

Компьютерная анимация. Получение движущихся изображений на дисплее ЭВМ на­зывается компьютерной анимацией. Слово «анимация» означает «оживление».

В недавнем прошлом художники-мультипликаторы со­здавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной ани­мации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объ­екта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опира­ющимися на математическое описание данного типа движе­ния. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Фрактальная графика. Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа — фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие (Фрактус – состоящий из фрагментов).

Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.

Рис.10 Фрактальная фигура.

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.

Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.

Источник

Оцените статью
Разные способы