Классификация способы возбуждения машин постоянного тока

Способы возбуждения машин постоянного тока и их классификация

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Читайте также:  Какие есть способы передачи вирусов

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Классификация машин постоянного тока по способу возбуждения

Рабочие свойства машин постоянного тока зависят в значитель­ной мере от способа соединения обмотки возбуждения с якорем машины. По способу питания обмотки возбуждения машины посто­янного тока подразделяются: на машины с параллельным возбуж­дением (шунтовые), машины с последовательным возбуждением (сериесные) и машины со смешанным возбуждением (компаундные) (рис. 2.10). Машины с параллельным и смешанным возбужде­нием применяют в качестве, как генераторов, так и двигателей, с последовательным возбуждением — только в качестве двигателей.

В машинах с параллельным возбуждением обмотка возбужде­ния присоединяется параллельно обмотке якоря (рис. 2.10, а), в машинах с последовательным возбуждением — последовательно с обмоткой якоря (рис.2.10, б). В машинах со смешанным возбужде­нием обмотка возбуждения имеет две части: одну, соединенную параллельно, а другую — последовательно с обмоткой якоря (рис. 2.10, в). Обмотки возбуждения, присоединяемые параллельно, вы­полняют из проводов небольшого сечения; обмотки же, присое­диняемые последовательно, рассчитываемые на прохождение че-рез них полного тока генератора, выполняют из проводов большо­го сечения.

ЭДС, которую развивает любой генератор постоянного тока, прямо пропорциональна числу его оборотов и величине магнит­ного потока, создаваемого полюсами. Магнитный же поток зави­сит от тока в обмотке возбуждения. Регулирование ЭДС генератора постоянного тока может осуществляться изменением либо числа его оборотов, либо величины тока возбуждения:

где р — число пар полюсов; N — число всех проводников обмот­ки; а — число параллельных ветвей; Ф — магнитный поток обмот­ки возбуждения (Вб); п — частота вращения якоря, мин» 1 .

Читайте также:  Бюджетный способ звукоизоляции стены

2.7. Электродвигатели постоянного тока

Величина вращающегося момента двигателя постоянного тока (М) выражается следующим соотношением:

где к — постоянная двигателя, зависящая от его конструкции; Ф — магнитный поток, Вб; /я — сила тока якоря, А. Скорость двигателя подчиняется уравнению

где Rя — сопротивление обмотки якоря, Ом.

Двигатель параллельного возбуж­дения, схема включения которого приведена на (рис. 2.11), о, присое­диняется к сети так, чтобы обмот­ка возбуждения всегда находилась под полным напряжением сети. Поэтому магнитный поток двига­теля остается постоянным, не за­висящим от нагрузки, а сила тока в обмотке якоря возрастает про­порционально нагрузке. Из форму­лы (2.8) видно, что вращающий момент двигателя также возраста­ет пропорционально нагрузке. Ско­рость вращения уменьшается по формуле (2.9) незначительно.

Регулирование скорости враще­ния, как показывает формула (2.9),

постигается изменением напряжения, подводимого к двигателю; вве­дением сопротивления в цепь якоря или изменением магнитного по­тока. Введение сопротивления в цепь якоря вызывает уменьшение ско­рости двигателя; регулирование скорости происходит при постоян­ном моменте. Этот способ применяется для подъемников, лебедок, поршневых компрессоров, насосов и т. д. Однако он связан со значи­тельными потерями, обусловленными нагревом добавочного сопро­тивления, через которое протекает весь ток якоря. Наибольшее рас­пространение имеет регулирование частоты вращения двигателя из­менением магнитного потока. Это достигается реостатом, включен­ным в обмотку возбуждения. При уменьшении силы тока возбужде­ния уменьшается магнитный поток, а следовательно, увеличивается частота вращения двигателя. В этом случае регулирование происходит при постоянной мощности. Включение реостата в цепь обмотки воз­буждения не вызывает значительных потерь энергии благодаря не­большому значению силы тока возбуждения. В двигателе параллельно­го возбуждения обмотка возбуждения имеет большое сопротивление и, следовательно, сила тока в этой обмотке и в реостате невелика.

Электродвигатель с последовательным возбуждением включают в сеть по схеме, изображенной на рис. 2.11, б. Своими характеристи­ками двигатели последовательного возбуждения значительно от­личаются от двигателей параллельного возбуждения. Вследствие того, что через обмотку возбуждения двигателя, последовательно соединенную с обмоткой якоря, проходит весь его ток, одновре­менно с увеличением нагрузки двигателя резко возрастает величи­на магнитного потока его полюсов. Также резко падает число его оборотов, которое, как уже отмечалось, изменяется обратно про­порционально магнитному потоку. В связи с этим такие двигатели, uo-первых, развивают большой вращающийся момент при малых оборотах (в частности, при пуске в ход) и, во-вторых, обладают большой перегрузочной способностью. Вместе с тем, с уменьше­нием нагрузки на валу частота вращения двигателя быстро возра­стает и при малых нагрузках (меньше 1/4 нормальной), он приоб­ретает скорость, опасную для его целостности. Вхолостую, т. е. без нагрузки, сериесные электродвигатели вообще нельзя пускать — они идут, как принято говорить, на «разнос». Это является отри­цательным свойством сериесного электродвигателя.

Читайте также:  Миндальный пилинг айкон скин способ применения

По своим характеристикам эти электродвигатели больше всего подходят для привода подъемно-транспортных устройств. Их ши­роко применяют в электрической тяге (трамваи, троллейбусы, электрические железные дороги).

В строительной практике двигатели последовательного возбуж­дения применяют на некоторых типах мощных экскаваторов с питанием от двигатель-генераторов и на электрических погрузчи­ках с питанием от аккумуляторов.

Регулирование скорости двигателей последовательного возбуж­дения принципиально не отличается от двигателей с параллель­ным возбуждением, только значение силы тока в обмотке возбуж­дения или якоря изменяется не реостатом, а их шунтированием — отводом части тока от этих обмоток.

Для изменения направления вращения двигателей постоянного тока (реверсирование) необходимо изменить полярность магнитного поля или направление силы тока в обмотке якоря. Эту операцию выполняют переключением соответствующих обмоток — якоря или возбуждения.

Источник

Возбуждение машин постоянного тока

Для работы электрической машины необходимо наличие магнитного поля. Это поле в большинстве машин создается постоянным электрическим током, проходящим в обмотке возбуждения, расположенной на главных полюсах (машины с электромагнитным возбуждением).

Свойства МПТ в значительной степени зависят от способа включения обмотки возбуждения, т.е. от способа возбуждения.

В дальнейшем нам придется рассматривать электрические схемы машин, поэтому сначала рассмотрим условные обозначения обмоток в соответствии с Государственными стандартами России.

обмотка якоря с щетками
обмотка возбуждения главных полюсов, включенная независимо или параллельно обмотке якоря
обмотка возбуждения, включенная последовательно с обмоткой якоря
компенсационная обмотка
обмотка возбуждения добавочных полюсов

Начала и концы отмоток обозначаются следующим образом:

— обмотка якоря – Я1 и Я2;

— обмотка добавочных полюсов – Д1 и Д2;

— компенсационная обмотка – К1 и К2;

— обмотка возбуждения независимая – М1 и М2;

— обмотка возбуждения параллельная – Ш1 и Ш2;

— обмотка возбуждения последовательная – C1 и C2.

По способам возбуждения МПТ можно классифицировать следующим образом:

Рисунок 45 Способы возбуждения машин постоянного тока

а) машины независимого возбуждения, в которых обмотка возбуждения (ОВ) питается постоянным током от источника, электрически не связанного с обмоткой якоря (возбудителя);

б) машины параллельного возбуждения (шунтовые),в которых обмотка возбуждения и обмотка якоря соединены параллельно;

в) машины последовательного возбуждения (сериесные),в которых обмотка возбуждения и обмотка якоря соединены последовательно;

г) машины смешанного возбуждения (компаундные),в которых имеются две обмотки возбуждения – параллельная ОВ1 и последовательная ОВ2;

Источник

Оцените статью
Разные способы