Вопрос 49:Классификация средств и методов защиты от шума
Классификация методов и средств защиты от шума. По отношению к защищенному объекту существуют методы и средства коллективной и средства индивидуальной защиты.
Средства защиты по отношению к источнику шума подразделяются на средства, снижающие шум на пути его распространения, и средства, снижающие шум в источнике возникновения. Средства, снижающие шум в источнике его возникновения в зависимости от характера шумообразования, подразделяются на средства, снижающие шум механического, аэро-, гидродинамического и электрического происхождения.
Снижение шума на пути его распространения возможно следующими способами:
• удаление приемника от источника на большие расстояния;
• изменение направленности источника шума;
• уменьшение ревербирующего звукового поля при помощи звукопоглощащего материала.
Средства и методы коллективной защиты от шума в зависимости от способа реализации подразделяются на акустические, архитектурно-планировочные, организационно-технические.
Акустические средства защиты. Защита от шума акустическими средствами предполагает: звукоизоляцию (устройство звукоизолирующих кабин, кожухов, ограждений, установку акустических экранов); звукопоглощение (применение звукопоглощающих облицовок, штучных поглотителей); глушители шума (абсорбционные, реактивные, комбинированные).
Звукоизоляция. Звуковая волна, обладая определенной энергией, наталкивается на преграду (ограждение). При столкновении часть звуковой энергии поглощается в материале преграды, часть отражается, часть проходит через преграду. Уравнение баланса звуковой энергии можно записать в виде
(6.14)
где IПАД – интенсивность падающего звука, Вт/м 2 ;
IПОГЛ – интенсивность поглощенного звука, Вт/м 2 ;
IОХР – интенсивность отраженного звука, Вт/м 2 ;
IПРОШ – интенсивность прошедшего звука, Вт/м 2 .
Прошедшая энергия вызывает образование нового звукового поля с другой стороны преграды путем преобразования звуковой энергии в механическую энергию колебаний преграды.
Амплитуда колебаний преграды обратно пропорциональна ее массе. Следовательно, амплитуда колебаний звуковых волн в приемном помещении обратно пропорциональна массе преграды.
Поглощаемая энергия преобразуется в другой вид энергии (обычно в тепловую). Средства звукоизоляции приведены на рис. 6.1.
Рис. 6.1. Типичные методы борьбы с шумом: 1 – наушники; 2 – звукоизолирующее ограждение;
3 – экран; 4 – увеличение расстояния; 5 – звукопоглощающий потолок; 6 – звукоизолирующая перегородка; 7 – виброизолирующая опора
Звукоизоляция ограждения при падении на него звуковой волны определяется из выражения
(6.15)
Звукоизолирующие качества плоских ограждений без отверстий определяются массой единицы площади ограждения. В качестве расчетной модели принимается плита, состоящая из системы не связанных одна с другой бесконечных масс. Тогда звукоизоляция подчинена закону масс
(6.16)
где m – масса одного квадратного метра ограждения, кг (плотность, кг/м 2 );
f – частота колебаний, Гц.
Выбранное ограждение отвечает требованиям норм, если во всех октавных полосах частот значение звукоизоляции RA не менее требуемых значений RTPi Звукоизоляцию определяют следующие показатели: масса, однородность, жесткость, воздушная прослойка, побочная передача шума, частота.
Звукоизоляция ограждением при дополнительной косвенной передаче шума (через отверстия, трещины, трубопроводы и т. д.) называется фактической звукоизоляцией ограждением Rф, дБ. Она определяется как
(6.17)
где SОГР – площадь ограждения, м 2 ;
SO – площадь отверстий в ограждении, м 2 ;
Акустические экраны применяются, когда в расчетной точке УЗД прямого звука значительно выше, чем УЗД отраженного звука и когда УЗД в расчетной точке превышает УЗДдоп не менее чем на 10 дБ и не более чем на 20 дБ (рис. 6.2).
Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. Экраны следует применять для источников, имеющих преимущественно средне- и высокочастотный спектр шума, так как степень проникновения звуковых волн в область акустической тени за экраном зависит от соотношения размеров экрана и длины волны падающего звука. Чем больше отношение длины волны к размеру экрана, тем меньше область звуковой тени за ним.
Рис. 6.2. Акустическое экранирование:
1 – источник шума; 2 – высокочастотная область; 3 – среднечастотная область; 4 – низкочастотная область; 5 – акустическая тень
Экраны эффективно использовать в акустически обработанном помещении или в открытом пространстве.
Экраны изготавливают из стальных или дюралюминиевых листов толщиной 1,5-2,0 мм или щитов, облицованных звукопоглощающим материалом толщиной не менее 50-60 мм. Линейные размеры экрана должны быть не менее чем в три раза больше линейных размеров источника шума.
Эффективность экрана ΔL определяется по формуле
(6.20)
где Рэк – звуковое давление в точке при наличии экрана, Па; РБЭ–звуковое давление в точке без применения экрана, Па. Звукопоглощение. Под звукопоглощением понимают свойство акустически обработанных поверхностей уменьшать интенсивность отраженных ими волн за счет преобразования звуковой энергии в тепловую в результате вязкого трения в капиллярах пор и необратимых потерь при деформации упругого скелета конструкции. Облицовка помещения звукопоглотителями, приведенными на рис. 6.3, обеспечит поглощение приблизительно 70% энергии низкочастотного и 95%-высоко-частотного шума.
Звукопоглощающие облицовки по виду используемого звукопоглощающего материала имеют следующие конструкции: облицовки из жестких однородных пористых материалов; облицовки с перфорированным покрытием в защитных оболочках из ткани и пленки. В качестве пористых материалов применяют плиты минераловатные, холсты из супертонкого стекловолокна, маты из супертонкого базальтового волокна, вспененные полимерные материалы и комбинированные. Эти материалы одновременно могут использоваться и для теплоизоляции.
Звукопоглощающие облицовки применяют тогда, когда требуемое снижение УЗД (ΔLTР) в расчетной точке превышает 1-3 дБ не менее чем в трех октавных полосах или превышает 5 дБ хотя бы в одной из октавных полос.
Из практики известно, что для достижения эффекта в снижении шума площадь акустической отделки поверхности помещения должна составлять не менее 60%. Облицовки размещают на стенах в верхней четверти площади. Облицовки следует располагать ближе к источникам шума, а также в местах концентрации звуковой энергии при ее отражении. Размещение облицовочных плит в шахматном порядке дает увеличение их акустической эффективности на 25-30% в широком диапазоне частот по сравнению с расположением сплошным массивом..
Глушители шума. Для снижения воздушного шума, создаваемого системами вентиляции и кондиционирования воздуха, применяют глушители шума.
В зависимости от принципа действия глушители делят на абсорбционные, реактивные и комбинированные.
Снижение шума в абсорбционные глушителях происходит за счет поглощения звуковой энергии применяемыми в них звукопоглощающими материалами. Они эффективно работают в широком диапазоне частот, когда коэффициент звукопоглощения применяемого материала близок к единице.
К абсорбционным глушителям относят трубчатые (круглого и прямоугольного сечений), пластинчатые, треугольно-призматические, цилиндрические.
Трубчатые глушители применяют в каналах с поперечным сечением до 500-600 мм. Длина глушителя составляет не более 1-2 м. Трубчатые глушители изготавливаются из перфорированного листового материала, облицованного слоем звукопоглощающего материала типа супертонкого стеклянного волокна. Диаметр перфорации d = 4. 8 мм, а шаг t = 2d.
Для сокращения габаритов глушителей и увеличения затухания шума на единицу длины широкого канала применяют пластинчатые глушители, представляющие собой набор параллельно установленных звукопоглощающих пластин. Пластины обычно выполняют в виде щитов с наружными перфорированными стенками, внутри которых находится слой мягкого звукопоглощающего материала с защитной оболочкой из стеклоткани, а также в виде пластин-перегородок, выполненных из твердых звукопоглощающих материалов. Уровень снижения шума пластинчатыми глушителями зависит от толщины пластин и расстояния между ними.
Реактивные глушители. К ним относят камерные, резонансные и экранные глушители. Камерные глушители состоят из одной или нескольких камер, представляющих собой полости в виде расширения участка воздуховода. В камерном глушителе звуковые волны отражаются от противоположной стенки и, возвращаясь к началу в противофазе по отношению к прямой волне, уменьшают ее интенсивность. Если внутреннюю часть расширения воздуховода облицевать звукопоглощающим материалом, то получится комбинированный глушитель. Резонансный глушитель представляет собой полость объемом V, соединенную с воздуховодом отверстием, называемым горлом резонансной камеры. Полость и отверстие образуют систему, обеспечивающую практически полное отражение звуковой энергии обратно к источнику на частотах, близких к его собственной частоте. Экранные глушители устанавливают на выходе из канала в атмосферу или на входе в канал. Они эффективны на высоких частотах и снижают шум на 10-25 дБ.
Комбинированные глушители – экранные, камерные со звукопоглощающим покрытием.
Для снижения шума в системах вентиляции и кондиционирования, образующегося в результате вибрации стенок воздуховодов, последние покрывают вибропоглощающими покрытиями (мастиками). Толщина слоя вибропоглощающего материала должна в шесть раз превышать толщину стенки воздуховода. При этом эффективность его применения составляет 5-7 дБ, амплитуда резонансных колебаний уменьшается примерно на 15 дБ.
Архитектурно-планировочные методы коллективной защиты от шума предполагают: рациональное размещение в зданиях технологического оборудования, машин и механизмов, рабочих мест; планирование зон движения транспорта; создание шумозащищенных зон в местах нахождения человека.
Источник
Классификация средств и методов защиты от шума
Основные мероприятия по борьбе с шумом и защите от него проводятся в трех направлениях:
— устранение причин возникновения шума или снижение его в источнике;
— ослабление шума на путях передачи (глушение, звукоизоляция, звукопоглощение);
— непосредственная защита людей.
Защита от шума может осуществляться как средствами и методами коллективной защиты, так и средствами индивидуальной защиты.
В первую очередь необходимо использовать средства коллективной защиты от шума. Схема классификации средств и методов коллективной защиты от шума приведена на рисунке 10.1.
Рисунок 10.1 – Средства коллективной защиты от шума
Наиболее эффективны мероприятия, ведущие к снижению шума в источнике его возникновения. Борьба с шумом после его возникновения обходится дороже и часто является малоэффективной.
Значительный эффект в борьбе с шумом дают организационно-технические методы:
— применение малошумных технологических процессов (изменение технологии производства, способа обработки и транспортирования материалов, сырья, полуфабрикатов и т.п.);
— оснащение шумных машин средствами дистанционного управления и автоматического контроля;
— применение малошумных машин, изменение конструктивных элементов машин, их сборочных единиц;
— совершенствование технологии ремонта и обслуживания машин;
— использование рациональных режимов труда и отдыха работников на шумных предприятиях.
Снижение шума на пути его распространения от источника в значительной степени достигается архитектурно-планировочными методами:
— рациональными акустическими решениями планировок зданий и генеральных планов объектов;
— размещение технологического оборудования, машин и механизмов c учетом степени их шумности;
— правильное размещение рабочих мест;
— рациональное акустическое планирование зон и режимов движения транспортных средств и транспортных потоков;
Источник
Классификация средств и методов защиты от шума
Основные направления шумозащиты. Для снижения акустического загрязнения окружающей среды используют:
— замену шумных источников и технологий на малошумные;
— изменение направленности излучения шума источником;
— снижение шума по пути распространения от источника до защищаемого от шума места;
— комплекс средств защиты от шума в шумном агрегате, транспортном средстве;
— архитектурно-планировочные меры в жилой застройке;
— улучшение качества воспринимаемого звука;
— новые акустические технологии.
Снижение шума в источнике путем изменения его направленности. Замена шумных источников на малошумные едва ли не самая кардинальная мера борьбы с шумом. Например, замена двигателя внутреннего сгорания на электродвигатель существенно снижает внешний шум автомобилей, строительных машин и др. Электромобиль на 15-20 дБА менее шумен, чем автомобиль с дизельным двигателем. Примером удачного использования малошумной технологии можно считать погружение свай с помощью бурения, что позволяет снизить шум по сравнению с вибропогружением или ударным погружением на 30-40 дБА. Можно привести и другие примеры снижения шума в источнике образования. Например, шум, генерируемый шинами автомобиля при движении, может быть снижен на 3-4 дБА при замене асфальтового покрытия на специальные покрытия с содержанием резины. Шум при качении колеса по рельсам можно ослабить на 8-10 дБА, снизив волнообразный износ рельсов путем их шлифования.
В общем случае ослабление шума в источнике обеспечивается уменьшением силового воздействия в источнике или звукоизлучающей способности элементов источника шума. В первом случается уравновешивают вращающиеся части, увеличивают время соударения деталей, уменьшают зазоры в сочленениях и соединениях, а также частоту вращения, линеаризируют аэродинамические и гидравлические потоки, снижают скорость движения. Во втором демпфируют вибрирующую поверхность, излучающую звук, уменьшают площадь звукоизлучения, нарушают синфазность колебаний излучающей поверхности, увеличивают коэффициент потерь материалов, из которых изготавливаются детали источника шума.
Снижение шума в окружающей среде путем изменения направленности излучения основано на том, что некоторые источники шума (в основном аэродинамического происхождения) неравномерно излучают шум в окружающее пространство. Показатель направленности, например, для реактивной струи может достигать 10-15 дБ, поэтому при направлении среза струи в сторону, противоположную защищаемому объекту, на это значение может быть уменьшен шум в окружающей среде. Несколько меньший эффект (до 5 дБ) может быть достигнут при направлении, например, среза трубы для сброса воздуха или отверстия воздухозаборной шахты в сторону, противоположную жилому району.
Снижение шума на пути его распространения. Для снижения шума на пути распространения используются два принципа:
— защита расстоянием, которое обеспечивает затухание звука в пространстве;
— установка на пути распространения сооружений, которые обеспечивают отражение звука.
В частности, при удвоении расстояния от точечного источника звука, например, со 100 м до 200 м или с 500 м до 1000 м шум уменьшается на 6 дБА. Если источник шума протяженный, линейный (например, движущийся поезд), то на расстояниях, сравнимых с его длиной, действует закон снижения шума на 3 дБА при удвоении расстояния. Вблизи больших плоских источников заметного затухания звука не происходит.
Основной конструкцией, снижающей шум на пути от источника до защищаемого объекта (жилого района), являются акустические экраны (АЭ) или иные сооружения, которые могут дать экранирующий эффект, например, дома, стенки, выемки, зеленые насаждения.
Принцип работы акустического экрана основан на создании зоны звуковой тени за ним в результате частичного отражения звука от его поверхности. Эффективность АЭ или экранирующего сооружения ухудшается из-за огибания (дифракции звуковых волн) препятствия между источником звука и защищаемым от шума объектом. Дифракция возрастает с увеличением длины звуковой волны и снижается при увеличении размеров АЭ. Эффективность экранирующих сооружений ориентировочно составляет (в зависимости от размеров и других особенностей): АЭ и насыпи – 5-15дБА; зеленых насаждений – 3-8 дБА; выемки – до 25-30 дБА; зданий (экранов) –15-20дБА.
Акустические экраны используются для установки вдоль автодорог, железнодорожных магистралей, вблизи аэропортов. Длина АЭ, установленных в США, Германии, Японии, Швейцарии, Италии, Франции и других странах, достигает десятков тысяч километров. Их изготавливают из бетона, стекла, дерева, металла, пластиков, старых покрышек и других материалов высотой в зависимости от назначения и места установки от 2-4 м (автодороги) до 20-25 м (аэропорты).
Шумовиброзащитные конструкции. Источниками излучения шума в окружающую среду являются автомобили, самолеты, суда, строительные машины и установки, пневмоинструмент, воздухозаборные шахты, компрессоры, трамваи, троллейбусы и т.д. Шум, в основном, возникает в результате совершения работы или движения. Для снижения шума от таких источников применяется комплекс мер. Для перечисленных примеров характерно образование механического шума (двигатели внутреннего сгорания, компрессоры и др.), аэродинамического (выхлоп и всасывание двигателей, реактивная струя, обтекание движущегося с большой скоростью транспортного средства), электромагнитного (электродвигатели, генераторы), ударного (падение ударной части на сваю, качение колеса по рельсу), гидродинамического (гидронасосы, гидромоторы).
Все средства шумозащиты от работы этих источников можно свести к трем основным принципам действия:
— поглощение звука (вибрации);
По принципу действия средств шумовиброзащиты выделяют:
— звукоизоляцию, которая основана на отражении звуковых волн от плоской массивной протяженной преграды. Основные звукоизолирующие конструкции — звукоизолирующие капоты (кожухи), перегородки, кабины;
— звукопоглощение, которое основано на поглощении звуковых волн при их падении на плоскую, мягкую, пористую или волокнистую поверхность. Основная конструкция – звукопоглощающая облицовка в замкнутых объемах (помещениях, капотах и т.д.);
— виброизоляцию, которая основана на отражении вибрации в устройствах, называемых виброизоляторами. Конструкции виброизоляторов — резиновые, резинометаллические, пружинные, пневматические;
— вибродемпфирование основанное на поглощении вибрации в вибродемпфирующих покрытиях, которые снижают как амплитуду колебания демпфируемой пластины, так и ее звукоизлучение. Вибродемпфирующие покрытия бывают мягкими, жесткими и комбинированными.
Глушители шума также основаны или на отражении звуковой энергии (реактивные), или на ее поглощении (абсорбционные), или на их комбинации (комбинированные).
Отметим, что эффективное использование перечисленных средств защиты от шума возможно только в комплексе. Например, для снижения наружного шума автомобиля применяются глушители на выхлопе и всасывании ДВС, звукоизолирующий капот на ДВС, установка АЭ на элементах капота и на шумящих агрегатах либо двигателя на резинометаллических виброизоляторах, а также демпфирование металлических конструкций и пр. Такой комплекс защитных устройств позволяет ослабить шум на 20-25 дБА. В то же время опыт использования супершумозаглушенных передвижных компрессорных станций (именно к этим агрегатам предъявляются особенно строгие требования по шумоглушению) показывает, что в них внешний шум удается снизить до 30-35 дБА за счет дополнительных затрат, которые могут достигать 40 % их стоимости.
Архитектурно-планировочные меры защиты от шума. В современном градостроительстве накоплен целый комплекс архитектурно-планировочных методов снижения шума в жилой застройке. К их числу следует отнести приемы, способствующие как снижению шума, так и повышению звукоизолирующей способности ограждающих конструкций зданий и сооружений.
Для реализации первого направления наряду с уже упомянутыми акустическими экранами, зелеными насаждениями, расположением транспортных потоков в выемках, используются шумозащитные дома, в которых приняты меры по уменьшению воздействия шума от транспортного потока (на транспортную магистраль выходят окна нежилых помещений), а сам дом располагается по отношению к шумной магистрали так, чтобы за ним образовывалась зона акустической тени. Такие дома позволяют снизить шум на 15-20 дБА.
Как правило, архитектурная планировка, обеспечивающая акустический комфорт, включает комплекс мер по защите от шума (районирование жилых массивов, зеленые насаждения, расположение шумных магистралей на значительном удалении, применение шумозащитных домов и пр.). Шумозащитное зонирование территории города предполагает отделение транспортных магистралей промышленной зоной и торговыми предприятиями от жилого района.
Особое внимание обращено на звукоизоляцию окон. В последние годы в решении этого вопроса достигнуты большие успехи благодаря применению специального акустического двойного и даже тройного остекления с уплотнением притворов, введением звукопоглощения по контуру в межоконном пространстве, увеличением толщины воздушного промежутка. Кроме того, используют окна из тяжелого стекла с увеличенной звукоизоляцией. Звукоизолирующая способность акустически обработанного остекления достигает 45-50 дБА, что близко к звукоизоляции стен и обеспечивает акустический комфорт в помещениях.
Организационные и прочие мероприятия по снижению шума в окружающей среде. К организационным мероприятиям по снижению шума в окружающей среде можно отнести:
— запрещение звуковых сигналов (это позволило повсеместно снизить шум в городах до 10 дБА);
— контроль за шумностью в городах;
— ограничение времени и места движения грузовых автомобилей и мотоциклов;
— вынесение шумных предприятий из спальных зон;
— рациональную организацию движения транспортных потоков;
— запрещение работы шумных источников (например, громкоговорящей связи на сортировочных и грузовых станциях);
— регламентацию работы шумных источников (например, запрещение включать громкую музыку после 23 00 ).
Помимо этого, внедряется еще одно направление улучшения качества воспринимаемого звука – изменение его спектра на более приятный, маскировка неприятных звуковых сигналов и пр. Это предмет изучения новой развивающейся науки – психоакустики.
Источник