Сети и телекоммуникации. Для студентов
В данной книге сделана попытка обобщить материал по дисциплинам «Сети и телекоммуникации», «Безопасность сетей ЭВМ», «Информационная безопасность распределенных информационных систем», проводимых на базе кафедры в течении 5 лет. Наши выпускники положительно отзываются о наличии в учебном плане группы дисциплин, связанных с сетями и телекоммуникациями и в качестве предложений высказывают пожелание увеличить их долю в учебном плане.
Оглавление
- Введение
- 1 ВВЕДЕНИЕ В СЕТЕВЫЕ ТЕХНОЛОГИИ
Приведённый ознакомительный фрагмент книги Сети и телекоммуникации. Для студентов предоставлен нашим книжным партнёром — компанией ЛитРес.
1 ВВЕДЕНИЕ В СЕТЕВЫЕ ТЕХНОЛОГИИ
1.1 Основные определения
Сеть передачи данных — совокупность трёх и более оконечных устройств связи, объединённых каналами передачи данных и коммутирующими устройствами (узлами сети), обеспечивающими обмен сообщениями между всеми оконечными устройствами.
Передача данных — физический перенос данных в виде сигналов от точки к точке или от точки к нескольким точкам средствами связи по каналу передачи данных. Примерами подобных каналов могут служить медные провода, волокно-оптические линии связи, беспроводные каналы передачи.
Сетевая инфраструктура включает в себя три категории компонентов сети:
2. Среда передачи;
Устройства и среды передачи — это физические элементы или аппаратное обеспечение сети. Аппаратное обеспечение зачастую является видимой частью сетевой платформы: ноутбук, ПК, коммутатор, маршрутизатор, беспроводная точка доступа или кабели, используемые для соединения устройств.
Оконечное устройство является либо отправителем (источником), либо получателем (адресатом) сообщения. Каждому оконечному устройству в сети назначается адрес, чтобы устройства можно было отличить от других. Если оконечное устройство инициирует обмен данными, то в качестве получателя сообщения оно использует адрес оконечного устройства назначения.
Примерами оконечных устройств могут служить:
1. Настольные персональные компьютеры;
5. Беспроводной планшетный компьютер;
Промежуточные устройства соединяют отдельные оконечные устройства с сетью и могут соединять несколько отдельных сетей для создания глобальных сетей. Такие устройства обеспечивают подключение и прохождение потоков данных по сети. Для определения пути передачи сообщения промежуточные устройства используют адрес оконечного устройства назначения в сочетании с информацией о связях в сети.
Примерами промежуточных устройств могут служить:
3. Межсетевой экран;
Среда передачи данных — физический канал, по которому сообщение передается от источника к адресату.
Типы физических сред передачи данных:
1. Медный кабель;
2. Оптоволоконный кабель;
3. Беспроводная связь.
Сетевая топология — граф, вершинами которого являются оконечные и промежуточные устройства, а ребрами — физические и информационные связи между вершинами. Схема обеспечивает наглядный способ понимания, каким образом устройства в большой сети связаны между собой. Подразделяется на несколько типов:
1. Физическая топология — отображает физическое расположение промежуточных устройств и кабельных линий;
2. Логическая топология — отображает устройства, порты и схемы адресации.
Изображения топологий приведены на рисунках 1 и 2.
Рисунок 1 — Пример физической топологии
Рисунок 2 — Пример логической топологии
Сетевая карта — устройство, позволяющее взаимодействовать с другими устройствами в сети.
Физический порт — разъем на сетевом устройстве, через который кабели подключены к компьютеру или другому сетевому устройству.
Интерфейс — специализированные порты в сетевом устройстве, которые подключаются к отдельным сетям. Поскольку маршрутизаторы соединяют между собой сети, порты маршрутизатора называются сетевыми интерфейсами.
Часто на практике слова «Порт» и «Интерфейс» являются взаимозаменяемыми.
Сети сильно отличаются по площади покрытия, количества пользователей, типа и объема предоставляемых услуг пользователям. Наиболее распространенными типами сетевых инфраструктур являются локальные сети LAN и глобальные сети WAN.
Локальная сеть (LAN) — сетевая инфраструктура, предоставляющая высокоскоростной доступ пользователям и оконечным устройствам на небольшой территории. Обычно является домашней сетью, сетью малого или крупного предприятия. Управляется одним квалифицированным лицом или отдельным IT-отделом на предприятии.
Глобальная сеть (WAN) — сетевая инфраструктура, предоставляющая доступ к другим сетям на большой территории. Принадлежит провайдерам телекоммуникационных услуг и находится под их управлением.
Интернет — всемирное объединение взаимосвязанных сетей для хранения и передачи информации.
Экстранет — защищённая от несанкционированного доступа корпоративная сеть, использующая Интернет-технологии для внутрикорпоративных целей, а также для предоставления части корпоративной информации и корпоративных приложений деловым партнерам компании.
Интранет — частные сети LAN и WAN, которые принадлежат организации и доступны только ее членам, сотрудникам и прочим авторизованным лицам.
Для сети Экстранет особенно важны аутентификация пользователя (который может и не являться сотрудником компании) и, особенно, защита от несанкционированного доступа, тогда как для приложений Интранет они играют гораздо менее существенную роль, поскольку доступ к этой сети ограничен физическими рамками компании.
Для доступа к Интернет существует множество способов подключения. Домашние пользователи, удаленные сотрудники компаний и малые офисы, как правило, для доступа в Интернет нуждаются в подключении к поставщикам услуг Интернета. Варианты подключения существенно меняются в зависимости от провайдера, географического местоположения и развития инфраструктуры. Популярные варианты включают в себя широкополосную кабельную сеть, широкополосную цифровую абонентскую линию (DSL), беспроводные глобальные сети и мобильные сервисы.
1.3 Надежность сетей
Для поддержания работоспособности и надежности сети требуется, чтобы она соответствовала четырем основным требованиям:
3. Качество обслуживание;
Отказоустойчивость — свойство сети сохранять свою работоспособность после отказа одного или нескольких составных компонентов. Для этого сети используют несколько путей передачи данных от источника к месту назначения. Если один путь недоступен, сообщения можно немедленно отправить по другой линии связи. Наличие нескольких путей к месту назначения называется резервированием.
Масштабируемость — свойство сети, позволяющая быстро расширить, обеспечив поддержку новых пользователей и приложений без снижения эффективности обслуживания существующих.
Качество обслуживания (QoS — Quality of Service) — технология предоставления различным классам трафика различных приоритетов в обслуживании во избежание перегрузки сети.
Обеспечение безопасности инфраструктуры сети включает в себя физическую защиту всех устройств, которые необходимы для сетевых подключений, и предотвращение несанкционированного доступа к установленному на них ПО управления.
Безопасность информации означает защиту пакетов данных, передаваемых по сети, а также информации, хранящейся на подключенных к сети устройствах.
1. Конфиденциальность — только указанные и авторизованные получатели могут иметь доступ к данным;
2. Целостность — гарантия того, что информация не была изменена в процессе передачи от исходного пункта к месту назначения;
3. Доступность — своевременный и надежный доступ к данным для авторизованных пользователей.
1.4 Коммуникация и протоколы
Коммуникация — тип взаимодействия между объектами, который подразумевает обмен информацией между этими объектами. Все способы коммуникаций имеют три общих элемента. Первый — это источник сообщения, или отправитель. Второй элемент — это адресат, или получатель сообщения. Адресат получает и интерпретирует сообщение. Третий элемент, называемый каналом, представляет собой среду передачи данных, по которой сообщение передается от источника к получателю.
В сетях существует несколько способов передачи данных:
1. Индивидуальная (Unicast);
2. Групповая (Multicast);
3. Широковещательная (Broadcast).
Unicast подразумевает собой передачу данных одному единственному адресату в сети. При передаче данных способом Multicast данные получают одновременно несколько адресатов в сети. Broadcast означает, что данные получат все узлы в сети за исключением того, кто информацию и передает.
Сетевые протоколы определяют общий формат и набор правил для обмена сообщениями между устройствами.
Набор протоколов представляет собой множество протоколов, которые используются вместе для предоставления комплексных сетевых сервисов. Набор протоколов может быть определен организацией по стандартизации или разработан производителем сетевого оборудования.
К примеру, набор протоколов TCP/IP является открытым стандартом. Данные протоколы находятся в свободном доступе, и любой разработчик может использовать эти протоколы в аппаратном или программном обеспечении. Каждый стандартный протокол принят отраслевыми компаниями и утвержден организацией по стандартизации. Использование стандартов в разработке и реализации протоколов гарантирует, что продукты от разных производителей будет успешно взаимодействовать между собой.
Открытые стандарты способствуют совместимости, конкуренции и инновациям. Кроме того, они гарантируют, что продукт отдельной компании не сможет монополизировать рынок или получить несправедливое преимущество по сравнению с конкурентами. Пример — покупка беспроводного маршрутизатора для дома. Существует множество вариантов маршрутизаторов различных производителей, каждый из которых включает стандартные протоколы, такие как IPv4, DHCP, 802.3 (Ethernet) и 802.11 (беспроводная сеть LAN). Открытые стандарты также позволяют клиенту с операционной системой OS X от компании Apple загрузить веб-страницу с веб-сервера под управлением GNU/Linux. Это связано с тем, что обе операционные системы используют протоколы открытых стандартов, например из набора протоколов TCP/IP.
Организации по стандартизации обычно являются независимыми от поставщиков некоммерческими организациями, созданными для разработки и продвижения концепции открытых стандартов.
Некоторые протоколы являются проприетарными. Это означает, что описание протокола и принципы его работы определяются одной конкретной компанией или поставщиком. Примерами частных протоколов являются устаревшие наборы протоколов AppleTalk и Novell Netware. Нередко поставщик (или группа поставщиков) разрабатывает частный протокол для удовлетворения потребностей своих заказчиков, а затем способствует принятию этого частного протокола в качестве открытого стандарта.
Примеры различных протоколов различных компаний продемонстрированы на рисунке 3.
Рисунок 3 — Примеры сетевых протоколов и их расположение на различных уровнях стека TCP/IP
1.5 Введение в эталонную модель сети
Чтобы представить взаимодействие между различными протоколами, принято использовать многоуровневые модели. Многоуровневая модель изображает работу протоколов, происходящую внутри каждого уровня, а также взаимодействие с уровнями выше и ниже.
Есть ряд преимуществ в использовании многоуровневой модели для описания сетевых протоколов и операций. Преимущества в использование многоуровневой модели:
1. Упрощение разработки протоколов, поскольку протоколы, работающие на определенном уровне, определяют формат обрабатываемых данных и интерфейс верхних и нижних уровней;
2. Стимулирование конкуренции, так как продукты разных поставщиков могут взаимодействовать друг с другом;
3. Предотвращение влияния изменений технологий или функций одного уровня на другие уровни (верхние и нижние);
4. Общий язык для описания функций сетевого взаимодействия.
Эталонная модель OSI определяет широкий список функций и сервисов, реализуемых на каждом уровне. Кроме того, она описывает взаимодействие каждого уровня с вышестоящими и нижестоящими уровнями. Всего модель насчитывает семь уровней. На рисунке 4 представлен стек модели OSI с указанием единицы данных, с которым работает каждый из уровней.
Рисунок 4 — Эталонная модель стека OSI
Описание каждого уровня:
7. Прикладной уровень содержит протоколы для обмена данными между приложениями;
6. Уровень представления обеспечивает общее представление данных, передаваемых между службами прикладного уровня;
5. Сеансовый уровень передает сервисы на уровень представления для организации его диалога и управления обмена данными;
4. Транспортный уровень определяет сервисы для сегментации, передачи и сборки данных для отдельных коммуникаций между оконечными устройствами;
3. Сетевой уровень представляет функции для обмена отдельными частями данных по сети между указанными оконечными устройствами;
Источник
Классификация сетевых технологий
Таблица 1. Классификация сетевых технологий
Признаки классификации | ||||
Специализация | Способ организации | Способ связи | Состав ПК | Охват территории |
•Универсальные •Специализированные | •Одноранговые (одноуровневые) • Двухуровневые | •Проводные •Беспроводные • Спутниковые | • Однородные • Неоднородные | •Локальные •Территориальные (региональные) •Федеральные •Глобальные |
По специализации: специализированные и универсальные
специализированные — для решения небольшого количества специальных задач. Примером специализированной служит технология резервирования мест на авиационные рейсы.
Классическим примером универсальной технологии является Академсеть Российской Федерации, предназначенная для решения большого количества разнообразных информационных задач.
по способу организации:одноуровневые и двухуровневые
В одноуровневой системе маршрутизации все роутеры равны по отношению друг к другу.
двухуровневыетехнологии имеют кроме ПК, с которыми непосредственно общаются пользователи и которые называются рабочими станциями, специальные компьютеры, называемые серверами (англ. to serve — обслуживать). Задачей сервера и является обслуживание рабочих станций с предоставлением им своих ресурсов, которые обычно существенно выше, чем ресурсы рабочей станции.
По способу связи : проводные,беспроводные.
В проводных технологиях в качестве физической среды в каналах используются:
• плоский двухжильный кабель;
• витая пара проводов
Беспроводные сетевые технологии, использующие частотные каналы передачи данных (средой является эфир), представляют в настоящее время разумную альтернативу обычным проводным сетям и становятся все более привлекательными. Самое большое преимущество беспроводных технологий — это возможности, предоставляемые пользователям портативных компьютеров. Однако скорость передачи данных, достигаемая в беспроводных технологиях, не может пока сравниться с пропускной способностью кабеля, хотя она в последнее время и значительно выросла
По составу ПК. Однородные и неоднородными
Однородные сетевые технологии предполагают увязку в сети однотипных средств, разрабатываемых одной фирмой. Подключение к такой сети средств других производителей возможно только при условии соблюдения в них стандартов, принятых в однородной архитектуре.
Другой подход состоит в разработке единой универсальной сетевой технологии независимо от типов применяемых в ней средств. Такие технологии называются неоднородными. Первым стандартом для таких сетей была базовая эталонная модель ВОС (взаимосвязь открытых систем). Настоящий стандарт на эталонную модель взаимосвязи открытых систем является общим базисом, координирующим работы по созданию стандартов для обеспечения взаимосвязи систем. Он разрешает использование существующих стандартов и определяет их будущее местоположение в рамках эталонной модели.
Требования данного стандарта являются обязательными
По Охвату территории
► Использование персональных компьютеров (ПК) в составе локальных вычислительных сетей (ЛВС) обеспечивает постоянное и оперативное взаимодействие между отдельными пользователями в пределах коммерческой либо научно-производственной структуры. Свое название ЛВС получила за то, что все ее компоненты (ПК, каналы коммуникаций, средства связи) физически размешаются на небольшой территории одной организации или ее отдельных подразделений.
► Территориальной (региональной) называют технологию (сеть), компьютеры которой находятся на большом удалении друг от друга, как правило, от десятков до сотен километров. Иногда территориальную сеть называют корпоративной или ведомственной. Такая сеть обеспечивает обмен данными между имеющими доступ к ресурсам сети абонентами по телефонным каналам сети общего назначения, каналам сети «Телекс», а также по спутниковым каналам связи. Количество абонентов сети не ограничено. Им гарантируется надежный обмен данными в режиме «реального времени», передача факсов и телефонных (телексных) сообщений в заданное время, телефонная связь по спутниковым каналам. Территориальные сети строятся по идеологии открытых систем. Их абонентами являются отдельные ПК, ЛВС, телексные установки, факсимильные и телефонные установки, сетевые элементы (узлы сети связи).
►Основная задача федеральной сети — создание магистральной сети передачи данных с коммутацией пакетов и предоставление услуг по передаче данных в реальном масштабе времени широкому кругу пользователей, к числу которых относятся и территориальные сети.
►Глобальные сети обеспечивают возможность общения по переписке и телеконференции. Основная задача глобальной сети — обеспечение абонентам не только доступа к компьютерным ресурсам, но и возможности взаимодействия между собой различных профессиональных групп, рассредоточенных на большой территории.
Топологии
Топология (конфигурация) – это способ соединения компьютеров в сеть.
Тип топологии определяет стоимость, защищенность, производительность и
надежность эксплуатации рабочих станций, для которых имеет значение
время обращения к файловому серверу
Существуют пять основных топологий:
Общая шина это тип сетевой топологии, в которой рабочие станции рас-
положены вдоль одного участка кабеля, называемого сегментом
В данном случае кабель используется всеми станциями по очереди, по-
этому принимаются специальные меры для того, чтобы при работе с общим
кабелем компьютеры не мешали друг другу передавать и принимать данные.
Все сообщения, посылаемые отдельными компьютерами, принимаются и
прослушиваются всеми остальными компьютерами, подключенными к сети.
Кольцо – это топология ЛВС, в которой каждая станция соединена с
двумя другими станциями, образуя кольцо (рис.4.2). Данные передаются от
одной рабочей станции к другой в одном направлении (по кольцу). Каждый
ПК работает как повторитель, ретранслируя сообщения к следующему ПК,
т.е. данные, передаются от одного компьютера к другому как бы по эстафете.
Если компьютер получает данные, предназначенные для другого компьюте-
ра, он передает их дальше по кольцу, в ином случае они дальше не передают-
ся. Основная проблема при кольцевой топологии заключается в том, что ка-
ждая рабочая станция должна активно участвовать в пересылке информации,
и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. То-
пология Кольцо имеет хорошо предсказуемое время отклика, определяемое
числом рабочих станций.
Звезда – это топология ЛВС, в которой все рабочие станции
присоединены к центральному узлу (например, к концентратору), который
устанавливает, поддерживает и разрывает связи между рабочими станциями.
Преимуществом такой топологии является возможность простого исключе-
ния неисправного узла. Однако, если неисправен центральный узел, вся сеть
выходит из строя.
Древовиднаятопология– достигается из звездообразной путем
каскадирования концентраторов. Такая топология широко используется в со-
временных высокоскоростных локальных компьютерных сетях. В качестве
узлов коммутации чаще всего выступают высокоскоростные коммутаторы.
Наиболее характерным представителем сетей с подобной структурой являет-
ся сеть 100VG AnyLan. И кроме того, высокоскоростной вариант магист-
ральной сети Ethernet – Fast Ethernet также имеет древовидную структуру.
По сравнению с шинными и кольцевыми сетями древовидные локаль-
ные сети обладают более высокой надежностью. Отключение или выход из
строя одной из линий или коммутатора, как правило, не оказывает сущест-
венного влияния на работоспособность оставшейся части локальной сети.
Ячеистаятопология– это топология, при которой все рабочие
станции соединены со всеми (полносвязанная топология). Ячеистая тополо-
гия нашла применение в последние несколько лет. Ее привлекательность за-
ключается в относительной устойчивости к перегрузкам и отказам. Благодаря
множественности путей из устройств, включенных в сеть, трафик может
быть направлен в обход отказавших или занятых узлов. Даже несмотря на то,
что данный подход отмечается сложностью и дороговизной (протоколы
ячеистых сетей могут быть достаточно сложными с точки зрения логики,
чтобы обеспечить эти характеристики), некоторые пользователи предпочи-
тают ячеистые сети сетям других типов вследствие их высокой надежности
Беспроводные технологии
Методы беспроводной технологии передачи данных (Radio Waves) являются удобным, а иногда незаменимым средством связи. Беспроводные технологии различаются по типам сигнала, частоте (большая частота означает большую скорость передачи) и расстоянию передачи. Большое значение
имеют помехи и стоимость. Можно выделить три основных типа беспроводной технологии:
− связь в микроволновом диапазоне;
Internet — это общемировая совокупность компьютерных сетей, связывающая между собой миллионы компьютеров. Сегодня Internet имеет около 400 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%.
Отдельные локальные сети могут объединяются в глобальные вычислительные сети (WAN — wide area network). Устройства, не относящиеся к одной и той же локальной физической сети LAN, устанавливают соединения с глобальной сетью через специализированное коммуникационное оборудование. Наиболее распространен метод подключения «внутренней» подсети к «внешней» подсети через компьютер-шлюз. Internet образует ядро, обеспечивающее связь различных сетей, принадлежащих различным учреждениям во всем мире, одна с другой. Состоит Internet из множества локальных и глобальных сетей. Internet можно представить себе в виде мозаики сложенной из небольших сетей разной величины, которые активно взаимодействуют одна с другой, пересылая файлы, сообщения и т. п.
С самого начала в структуре Internet выделяли магистральную сеть и сети, присоединенные к магистрали (автономные, локальные). Магистральная сеть и каждая из автономных имели свое собственное административное управление и собственные
Источник