Вопрос 5. Принципы классификации рецепторов
Рецепторы представляют собой конечные специализированные образования, предназначенные для трансформации энергии различных видов раздражителей в специфическую активность нервной системы.
Рецепторные клетки отличаются от остальных, по крайней мере, в двух отношениях. Во-первых, энергия раздражителя служит для них лишь стимулом к запуску процессов, совершаемых за счет потенциальной энергии, которая накоплена вследствие обменных реакций в самой клетке. Во-вторых, рецепторная клетка обладает на выходе электрической энергией, обязательно передаваемой другим клеткам, которые сами не способны воспринимать энергию данного внешнего воздействия.
Основной структурной единицей большинства рецепторных аппаратов является клетка, снабженная подвижными волосками, или ресничками. Эти волоски представляют собой как бы периферические подвижные антенны, действующие подобно усилителям по отношению к воспринимаемым раздражителям и участвующие в трансформации раздражителя в нервную сигнализацию. Волоски содержат в своем составе 9 пар периферических и 2 центральные фибриллы. Центральные фибриллы выполняют опорную роль, а периферические, содержащие миозиноподобные макромолекулы, сокращаются под воздействием АТФ. Благодаря их автоматическим движениям осуществляются непрерывные поиски адекватного стимула и обеспечиваются наилучшие условия для взаимодействия с ним. Следовательно, в одной и той же клетке представлены и собственно рецепторная, и моторная функции.
Другая сторона деятельности рецепторных элементов заключается во взаимодействии энергии внешнего стимула с поверхностью антенн, которые покрыты мембраной (мембрана образована из двойного слоя липидов, ограниченного с обеих сторон слоем белковых молекул). Специфической особенностью рецепторных мембран является включение в их состав биологически активных веществ — пигментов, ферментов, ацетилхолинэстеразы и др.
У некоторых рецепторов во взаимодействии со стимулом принимает участие вся клетка (например, хеморецепторные клетки, чувствительные к напряжению кислорода в крови), у других (вкусовые луковицы позвоночных), восприятие осуществляется микроворсинками. В большей части рецепторов кожи, внутренних органов и мышц участки преобразования стимула находятся в окончаниях нервных волокон.
В основу классификации рецепторов положены следующие
1. Среда, в которой рецепторы воспринимают информацию (экстеро-, интеро-, проприо- и другие рецепторы).
Экстерорецепторы воспринимают раздражения внешних агентов (рецепторы органов слуха, зрения, обоняния, вкуса, осязания).
Интерорецепторы сигнализируют о раздражителях внутренней среды (рецепторы внутренних органов).
Проприоцепторы (рецепторы опорно-двигательного аппарата).
2. Природа адекватного раздражителя (механо-, термо-, фото- и другие рецепторы).
Механорецепторы приспособлены к восприятию механической энергии раздражающего стимула.
Терморецепторы воспринимают температурные раздражения.
Хеморецепторы чувствительны к действию химических агентов.
Фоторецепторы воспринимают световую энергию
3. Характер ощущения после контакта с рецепторами (тепловые, холодовые, болевые и др.).
4. Способность воспринимать раздражитель, находящийся на расстоянии от рецептора — дистантный (обонятельный, зрительный) или при непосредственном контакте с ним — контактный (вкусовой, тактильный).
5. По количеству воспринимаемых модальностей (раздражителей) рецепторы могут быть мономодальными (например, световой) и полимодальными (механический и температурный).
6. Морфологические особенности и механизмы возникновения возбуждения. Различают первичночувствующие (обонятельные, тактильные) и вторичночувствующие рецепторы (зрения, слуха, вкуса).
Первичночувствующие рецепторы — это биполярные сенсорные нервные клетки, снабженные ресничками, которые наподобие антенн ведут «поиск» адекватного раздражителя. Контакт с раздражителем приводит к возникновению рецепторного потенциала, который электротонически распространяется к аксону сенсорного нейрона, где формируется ПД, распространяющийся по нервному волокну.
К вторичночувствующим рецепторам относятся те рецепторы, у которых между сенсорными нейронами и раздражителем существует еще дополнительная рецептирующая клетка нервного происхождения, например, палочки и колбочки, волосковые клетки слухового анализатора. После контакта с раздражителем в рецептирующей клетке возникает рецепторный потенциал, который с помощью синаптической передачи между рецептирующей клеткой и нервным волокном сенсорного нейрона способствует возникновению в нем генераторного потенциала. Последний на аксоне нейрона преобразуется в ПД, который электротонически распространяется по нервному волокну.
Рецепторы обладают целым рядом свойств, из которых можно выделить следующие:
1. Специфичность рецепторов, т.е. способность воспринимать только тот адекватный им вид раздражителя, к которому он приспособлен в процессе эволюции. Так, слуховые рецепторы приспособлены к восприятию звука, зрительные — света.
2. Высокая избирательная чувствительность по отношению к адекватному раздражителю, что позволяет рецептору выбрать определенный тип воздействия среди множества других. Так, ощущение запаха можно получить при содержании одной молекулы вещества в 1 м3 воздуха, контактирующего со слизистой оболочкой носа.
3. Способность к кодированию или преобразованию одной формы информации в другую, т.е. возбуждение или нервный импульс.
4. Функциональная мобильность. Так, у людей, живущих в условиях холодного климата, больше Холодовых рецепторов, чем тепловых, а в условиях теплого климата — наоборот.
Источник
Классификация рецепторов по способу восприятия раздражения
Вход в нервную систему обеспечивают сенсорные рецепторы, воспринимающие различные сенсорные стимулы, например прикосновение, звук, свет, боль, холод и тепло. Цель наших статей — обсуждение основных механизмов, с помощью которых рецепторы преобра зуют сенсорные стимулы в нервные сигналы, передаваемые затем в центральную нервную систему, где они подвергаются обработке.
а) Типы сенсорных рецепторов и раздражители, которые они воспринимают. В таблице выше представлен список и классификация большинства сенсорных рецепторов тела. Согласно этой таблице, выделяют пять основных типов сенсорных рецепторов:
(1) механорецепторы, реагирующие на механическое сжатие или растяжение самого рецептора или смежных с ним тканей;
(2) терморецепторы, воспринимающие изменения температуры: одни из них реагируют на холод, другие — на тепло;
(3) ноцицепторы (болевые рецепторы), реагирующие на повреждение ткани независимо от природы повреждения (физической или химической);
(4) электромагнитные рецепторы, воспринимающие свет на сетчатке глаза;
(5) хеморецепторы, которые обнаруживают вкус во рту, запах в носу, уровень кислорода в артериальной крови, осмоляльность жидкостей тела, концентрацию углекислого газа и, возможно, другие химические факторы нашего тела.
В статьях на сайте мы обсудим функцию нескольких типов рецепторов, прежде всего периферических механорецепторов, для иллюстрации некоторых общих принципов работы рецепторов. Другие рецепторы обсуждаются в главах, посвященных соответствующим сенсорным системам, в составе которых они функционируют. На рисунке ниже показаны некоторые механорецепторы, расположенные в коже или глубоких тканях тела.
Некоторые типы соматических рецепторов
б) Специфическая чувствительность рецепторов. Прежде всего, необходимо ответить на вопрос, почему разные типы сенсорных рецепторов реагируют на различные типы раздражителей? Ответом на этот вопрос является специфическая чувствительность рецепторов. Это значит, что каждый тип рецептора высокочувствителен к определенному типу стимула, для восприятия которого он предназначен, и практически нечувствителен к другим типам сенсорных стимулов.
Так, палочки и колбочки глаза высокочувствительны к свету, но почти совсем не реагируют на нормальные диапазоны изменений температуры, давления на глазные яблоки или химических показателей крови. Осморецепторы супраоптических ядер гипоталамуса обнаруживают самые незначительные изменения осмоляльности внеклеточных жидкостей тела, но пока неизвестны случаи их реакции на звук.
Наконец, рецепторы боли в коже почти никогда не стимулируются обычным прикосновением к коже или давлением на нее, но реагируют очень активно в тот момент, когда осязательные стимулы становятся достаточно сильными, чтобы повредить ткани.
в) Модальность ощущения. Принцип меченой линии. Отличительную особенность каждого из переживаемых нами ощущений (боль, прикосновение, свет, звук и т.д.) называют модальностью ощущения. Однако, хотя модальности ощущений различны, нервные волокна передают только импульсы. Справедлив вопрос: как возбуждение разных нервных волокон ведет к развитию ощущений различной модальности?
Ответ заключается в том, что каждый чувствительный тракт заканчивается в определенном участке центральной нервной системы, и тип ощущения, испытываемого при стимуляции нервного волокна, определяется тем участком нервной системы, к которому от него придет возбуждение. Например, если раздражается болевое волокно, человек чувствует боль независимо от того, стимул какого типа возбуждает волокно.
Это может быть электрическое раздражение самого волокна, его перегревание, раздавливание или стимуляция болевого рецептора при повреждении тканевых клеток. Во всех этих случаях человек почувствует боль. Аналогично, если тактильное волокно стимулируется электрическим раздражением тактильного рецептора или любым другим способом, человек чувствует прикосновение, поскольку по тактильным волокнам информация достигает определенных чувствительных областей головного мозга. Точно так же волокна от сетчатки глаза заканчиваются в зрительных областях мозга, слуховые пути от уха заканчиваются в слуховых областях, а температурные пути оканчиваются в температурных областях.
Таким образом, специфичность нервных путей способствует развитию ощущений только одной модальности. Эту особенность называют принципом меченой линии.
Видео физиология анализаторов — общая схема — профессор, д.м.н. П.Е. Умрюхин
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
— Вернуться в оглавление раздела «Физиология человека.»
Источник
Классификация рецепторов по способу восприятия раздражения
В результате действия адекватного раздражителя у большинства рецепторов увеличивается проницаемость клеточной мембраны для катионов, что приводит к ее деполяризации. Исключением из общего правила являются фоторецепторы, где после поглощения энергии квантов света в связи особенностями управления ионными каналами происходит гиперполяризация мембраны. Изменение величины мембранного потенциала рецепторов в ответ на действие стимула представляет собой рецепторный потенциал — входной сигнал первичных сенсорных нейронов. Если величина рецепторного потенциала достигнет критического уровня деполяризации или превысит его, генерируются потенциалы действия, с помощью которых сенсорные нейроны передают в центральную нервную систему информацию о действующих стимулах.
Генерация потенциалов действия происходит в ближайшем к рецепторам перехвате Ранвье миелинизированных волокон или ближайшей к рецепторам части мембраны безмиелинового волокна. Минимальная сила адекватного стимула, достаточная для генерации потенциалов действия в первичном сенсорном нейроне, определяется как его абсолютный порог. Минимальный прирост силы стимула, сопровождающийся значимым изменением реакции сенсорного нейрона, представляет собой дифференциальный порог его чувствительности.
Информация о силе действующего на рецепторы стимула кодируется двумя способами: частотой потенциалов действия, возникающих в сенсорном нейроне (частотное кодирование), и числом сенсорных нейронов, возбудившихся в ответ на действие стимула. При увеличении силы действующего на рецепторы раздражителя повышается амплитуда рецепторного потенциала, что, как правило, сопровождается увеличением частоты потенциалов действия в сенсорном нейроне первого порядка. Чем шире имеющийся частотный диапазон потенциалов действия у сенсорных нейронов, тем большее число промежуточных значений силы раздражителя способна различать сенсорная система. Первичные сенсорные нейроны одинаковой модальности различаются порогом возбуждения, поэтому при действии слабых стимулов возбуждаются только наиболее чувствительные нейроны, но с увеличением силы раздражителя на него реагируют и менее чувствительные нейроны, имеющие более высокий порог раздражения. Чем больше первичных сенсорных нейронов возбудится одновременно, тем сильнее будет их совместное действие на общий нейрон второго порядка, что в итоге отразится на субъективной оценке интенсивности действующего раздражителя.
Длительность ощущения зависит от реального времени между началом и прекращением воздействия на рецепторы, а также от их способности уменьшать или даже прекращать генерацию нервных импульсов при продолжительном действии адекватного стимула. При длительном действии стимула порог чувствительности рецепторов к нему может повышаться, что определяется как адаптация рецепторов. Механизмы адаптации не одинаковы в рецепторах разных модальностей, среди них различают быстро адаптирующиеся (например, тактильные рецепторы кожи) и медленно адаптирующиеся рецепторы (например, проприоцепторы мышц и сухожилий). Быстро адаптирующиеся рецепторы сильнее возбуждаются в ответ на быстрое нарастание интенсивности стимула (фазический ответ), а их быстрая адаптация способствует освобождению восприятия от биологически незначительной информации (например, контакт между кожей и одеждой). Возбуждение медленно адаптирующихся рецепторов мало зависит от скорости изменения стимула и сохраняется при его длительном действии (тонический ответ), поэтому, например, медленная адаптация проприоцепторов позволяет человеку получать нужную ему для сохранения позы информацию в течение всего необходимого времени.
Существуют сенсорные нейроны, генерирующие потенциалы действия спонтанно, т. е. при отсутствии раздражения (например, сенсорные нейроны вестибулярной системы), такая активность называется фоновой. Частота нервных импульсов в этих нейронах может увеличиваться или уменьшаться в зависимости от интенсивности действующего на вторичные рецепторы стимула, кроме того, она может определяться направлением, в котором отклоняются чувствительные волоски механорецепторов. Например, отклонение волосков вторичных механорецепторов в одну сторону сопровождается повышением фоновой активности сенсорного нейрона, которому они принадлежат, а в противоположную сторону — понижением его фоновой активности. Указанный способ рецепции позволяет получать информацию и об интенсивности стимула, и о направлении, в котором он действует.
Источник