2. Классификация химических реакторов
Основу большинства химико-технологических процессов составляют реакторные процессы, в ходе которых сырье и реагенты превращаются в новые химические продукты.
Главными показателями, которые характеризуют процесс, являются скорость реакции и степень превращения сырья в готовый продукт.
Задача управления заключается в поддержании оптимальных значений этих показателей, обеспечивающих получение продукта заданного качества при максимальной производительности реактора и минимальных затратах.
Скорость реакции зависит от температуры и давления в реакторе, от концентрации реагирующих веществ и активности или концентрации катализатора. Следовательно, каждый из перечисленных факторов может быть использован в качестве управляющего воздействия на реакторный процесс.
Классификация химических реакторов и режимов их работы.
Химические реакторы для проведения различных процессов отличаются друг от друга по конструктивным признакам. Однако, несмотря на существующие различия, можно выделить общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор метода расчета.
Наиболее употребимы следующие признаки классификации химических реакторов и режимов их работы: 1) режим движения реакционной среды (гидродинамическая обстановка в реакторе); 2) условия теплообмена в реакторе; 3) фазовый состав реакционной смеси; 4) способ организации процесса; 5) характер изменения параметров процесса во времени; 6) конструктивные характеристики.
Классификация реакторов по гидродинамической обстановке. В зависимости от гидродинамической обстановки можно разделить все реакторы на реакторы смешения и вытеснения.
Реакторы смешения — это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Реакторы вытеснения — трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока.
В теории химических реакторов обычно сначала рассматривают два идеальных аппарата — реактор идеального или полного смешения и реактор идеального или полного вытеснения.
Для модели идеального смешения принимается ряд допущений. Допускается, что в результате интенсивного перемешивания устанавливаются абсолютно одинаковые условия в любой точке реактора: концентрации реагентов и продуктов, степени превращения реагентов, температура, скорость химической реакции и т.д.
Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме. Идеальное вытеснение возможно при выполнении следующих допущений: 1) движущий поток имеет плоский профиль линейных скоростей; 2) отсутствует обусловленное любыми причинами перемешивание в направлении оси потока.
Реальные реакторы в большей или меньшей степени приближаются к модели идеального вытеснения или идеального смещения. Внесение определенных поправок на неидеальность позволяет использовать модели идеальных аппаратов в качестве исходных для описания реальных реакторов.
Классификация по условиям теплообмена. Протекающие в реакторах химические реакции сопровождаются тепловыми эффектами (это тепловые эффекты химических реакций и сопровождающих их физических явлений, таких, например, как процессы растворения, кристаллизации, испарения и т.п.). Вследствие выделения или поглощения теплоты изменяется температура и возникает разность температур между реактором и окружающей средой, а в определенных случаях температурный градиент внутри реактора. Разность температур Т является движущей силой теплообмена.
При отсутствии теплообмена с окружающей средой химический реактор является адиабатическим. В нем вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен и на нагрев или охлаждение реакционной смеси.
Изотермические реакторы. Для сохранения постоянной температуры процесса в реакторах этого типа необходимо подводить или отводить тепло в соответствии с тепловым эффектом реакции. Однако, изотермические реакторы сравнительно редко используются в крупномасштабных производствах; высокая стоимость оборудования или теплообмена делает процесс неэкономичным. Поэтому промышленные реакторы чаще проектируются как адиабатическими или политропическими.
Политропические реакторы. В этих аппаратах предусмотрен подвод или отвод тепла.
В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется за счет теплообмена с окружающей средой, а частично вызывает изменение температуры реакционной смеси.
Особо следует выделить автотермические реакторы, в которых поддержание необходимой температуры процесса осуществляется только за счет теплоты химического процесса без использования внешних источников энергии. Обычно стремятся к тому, чтобы химические реакторы, особенно применяемые в крупнотоннажных производствах, были автотермическими.
Классификация по фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения гетерогенных процессов, в свою очередь, подразделяют на газожидкостные реакторы, реакторы для процессов в системах газ — твердое вещество, жидкость твердое вещество и др. Особо следует выделить реакторы для проведения гетерогенно-каталитических процессов.
Классификация по способу организации процесса. По способу организации процесса (способу подвода реагентов и отвода продуктов) реакторы подразделяют на периодические, непрерывно-действующие и полунепрерывные (полупериодические).
В реакторе периодического действия все отдельные стадии протекают последовательно, в разное время. Все реагенты вводят в аппарат до начала реакции, а смесь продуктов отводят после окончания процесса. Продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени.
Между отдельными реакционными циклами в периодическом реакторе необходимо осуществить вспомогательные операции — загрузку реагентов и выгрузку продуктов. Поскольку во время этих вспомогательных операций не может быть получено дополнительное количество продукта, их наличие обусловливает снижение производительности периодического реактора.
В реакторе непрерывного действия (проточном) все отдельные стадии процесса химического превращения вещества и подача реагирующих веществ, химическая реакция, вывод готового продукта) осуществляются одновременно и, следовательно, непроизводительные затраты времени на операции загрузки и выгрузки отсутствуют. Поэтому на современных крупнотоннажных химических производствах, где требуется высокая производительность реакционного оборудования, большинство химических реакций осуществляют в непрерывно действующих реакторах.
Время пребывания отдельных частиц потока в непрерывно-действующем реакторе, в общем случае, случайная величина. Так как от времени, в течение которого происходит реакция, зависит глубина химического превращения, то она будет разной для частиц с разным временем пребывания в реакторе. Средняя глубина превращения определяется видом функции распределения времени пребывания отдельных частиц, зависящим, в свою очередь, от характера перемешивания, структуры потоков в аппарате и для каждого гидродинамического типа реактора индивидуальным.
Реактор полунепрерывного (полупериодического) действия характеризуется тем, что один из реагентов поступает в него непрерывно, а другой — периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выводятся непрерывно, или наоборот.
Классификация по характеру изменения параметров процесса во времени. В зависимости от характера изменения параметров процесса во времени одни и те же реакторы могут работать в стационарном и нестационарном режимах.
Рассмотрим некоторую произвольную точку, находящуюся внутри химического реактора. Режим работы реактора называют стационарным, если протекание химической реакции в произвольно выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов, температуры, скорости и других параметров процесса в любой момент времени. В стационарном режиме параметры потока на выходе из реактора не зависят от времени. Обычно это постоянство выходных параметров обеспечивается постоянством во времени параметров на входе в реактор.
Если в произвольно выбранной точке происходят изменения параметров химического процесса во времени по тому или иному закону, режим работы реактора называют нестационарным. Нестационарный режим является более общим. Стационарный режим возможен для непрерывно-действующих проточных реакторов. Но даже эти реакторы работают в нестационарном режиме в моменты их пуска и остановки. Нестационарными являются все периодические процессы.
Нестационарные реакторы характеризуются положительным или отрицательным накоплением вещества или энергии в реакторе. Например, для периодического реактора характерно положительное накопление продуктов реакции и отрицательное накопление (убыль) исходных реагентов. При протекании в таком реакторе экзотермической реакции в отсутствие теплообмена с окружающей средой будет иметь место накопление теплоты (энергии), которое приведет к росту температуры.
Стационарные проточные реакторы (описываются более простыми уравнениями); протекающие в них процессы легче автоматизировать.
Нестационарность процесса в реакторе, естественно, вносит определенные усложнения и в описание реактора, и в управление его работой, однако во многих случаях нестационарные режимы технологических процессов, протекающих в химических реакторах, легче приблизить к оптимальным.
Классификация по конструктивным характеристикам. Химические реакторы отличаются друг от друга и по ряду конструктивных характеристик, оказывающих влияние на расчет и изготовление аппаратов. По этому принципу классификации можно выделить такие типы реакторов: емкостные реакторы (автоклавы; реакторы-камеры; вертикальные и горизонтальные цилиндрические конверторы и т.п.). Колонные реакторы (реакторы-колонны насадочного и тарельчатого типа; каталитические реакторы с неподвижным, движущимся и псевдоожиженным слоем катализатора; полочные реакторы); реакторы типа теплообменника; реакторы типа реакционной печи (шахтные, полочные, камерные, вращающиеся печи и т.п.).
Источник
Классификация химических реакторов
ХИМИЧЕСКИЕ РЕАКТОРЫ
Любой ХТП невозможен без химического реактора, в котором протекают как химические, так и физические процессы.
РЕАКТОРЫ ХИМИЧЕСКИЕ (от лат. rе- приставка, означающая обратное действие, и actor — приводящий в действие, действующий), промышленные аппараты для осуществления химических реакций. Конструкция и режим работы химического реактора определяются типом реакции, фазовым состоянием реагентов, характером протекания процесса во времени (периодический, непрерывный, с изменяющейся активностью катализатора), режимом движения реакционной среды (периодический, полупроточный, с рециклом), тепловым режимом работы (адиабатический, изотермический, с теплообменом), типом теплообмена, видом теплоносителя.
Современный химический реактор — это сложный аппарат, имеющий специальные устройства, например:
1)загрузочно-разгрузочные устройства (насосы);
2)теплообменники;
3) перемешивающие устройства,
предназначенные для получения целевого продукта, оборудованный сложной системой контрольно-измерительных приборов КИП.
Требования к промышленным реакторам
1.МАХ производительность и интенсивность работы.
2. Высокий выход продукта Ф и наибольшая селективность процесса φ— это обеспечивается оптимальным режимом работы реактора (Т, Р, С), высокая степень превращения X.
3.Оптимальные энергозатраты на массообмен в реакторе
Существует противоречие между требованием к высокой производительности (посырью) и высокойстепенью превращения ХА (реагента):
в схемах с открытым цикломпредпочтение отдают высокой степени превращения ХА реагентов;
в закрытых системахпредпочтение отдают высокой производительности.
При производстве продукта высокого качества, реактор должен обеспечивать его минимальную себестоимость.
Классификация химических реакторов
1) По конструктивным признакам:
Рис. 1 – Основные типы хим. реакторов: а – проточный емкостный реактор с мешалкой и теплообменной рубашкой; б – многослойный каталитический реактор с промежуточными и теплообменными элементами; в – колонный реактор с насадкой для двухфазного процесса; г – трубчатый реактор; И-исходные вещества; П – продукты реакции; Т – теплоноситель; К – катализатор; Н – насадка; ТЭ – теплообменные элементы.
а) емкостные реакторы (автоклавы, реакторы-камеры; вертикальные и горизонтальные цилиндрические конверторы и т.п.). Емкостные химические реакторы – полые аппараты, часто снабженные перемешивающим устройством. Перемешивание газо-жидкостных систем может производиться барботированием газообразного реагента. Теплообмен осуществляется через поверхность химического реактора или путем частичного испарения жидкого компонента реакционной смеси. В емкостных химических реакторах проводят непрерывные, перио-дические и полупериодические процессы;
б) колонные реакторы (реакторы-колонны насадочного и тарельчатого типа; каталитические реакторы с неподвижным, движущимся и псевдоожиженным слоем катализатора; полочные реакторы). Колонные химические реакторы могут быть пустотелыми либо заполненными катализатором или насадкой. Для улучшения межфазного массообмена применяют диспергирование с помощью разбрызгивателей, барботеров, механического воздействия (вибрация тарельчатой насадки, пульсация потоков фаз) или насадки, обеспечивающей высокоскоростное пленочное движение фаз. Реакторы данного типа используют в основном для проведения непрерывных процессов в двух- или трехфазных системах. К реакторам этого типа относят также аппараты с неподвижным или псевдоожиженным слоем (одним или несколькими) катализатора. В многослойных реакторах теплообмен осуществляется смешением потоков реагентов или в теплообменных элементах аппарата;
в) реакторы-теплообменники. Трубчатые химические реакторы применяют часто для каталитических реакций с теплообменом в реакционной зоне через стенки трубок и для осуществления высокотемпературных процессов газификации. При одновременном скоростном движении нескольких фаз в таких реакторах достигается наибольший интенсивный межфазный массообмен;
г) реакторы типа реакционной печи (шахтные, полочные, камерные, вращающиеся печи) и т.д.
Специфическими особенностями отличаются химические реакторы для электрохимических, плазмохимических и радиационно-химических процессов.;
2) По фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Для гетерогенных – газожидкостные реакторы, в системах газ-твердое вещество, жидкость – твердое вещество и т.д. Реакторы для проведения гетерогенно-каталитических процессов.
3) По способу организации теплообмена. Подразделяют на реакторы с внешним, внутренним и комбинированным теплообменом. А также автотермические реакторы, в которых необходимая температура процесса поддерживается без использования внешних источников энергии.
4) По условиям теплообмена с окружающей средой:
— адиабатический – теплообмен с окружающей средой отсутствует (вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен – на нагрев или охлаждение реакционной смеси, например, за счет теплоизоляции);
— изотермический – вследствие теплообмена с окружающей средой в нем обеспечивается постоянство температуры. В любой точке реактора в результате теплообмена полностью компенсируется выделение или поглощение теплоты (т.е. пропорциональное тепловому эффекту реакции);
— политермический (политропический) – регулируемые в них температура по высоте реактора изменяется в соответствии с заданной программой. Это может осуществляться за счет теплообменных устройств.
5) По гидродинамическому режиму:
а) реакторы смешения – емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. (РИС или РПС);
б) реакторы вытеснения (РИВ, РПВ) – трубчатые аппараты, перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока и ее флуктуациями, а также завихрениями;
в) с промежуточным режимом – перемешивание имеется, но не полное, либо не во всех точках.
Реальные реакторы приближаются к моделям ИС и ИВ, внося определенные поправки можно использовать модели.
6) По организации процесса (способ подвода реагентов и отвода продуктов):
а) В периодических реакторах все операции осуществляются последовательно и в разное время. Между отдельными реакционными циклами необходимо выполнить вспомогательные операции – загрузку реагентов и выгрузку продуктов.
Т.о. снижается производительность периодического реактора.
б) В реакторе непрерывного действия (проточном) – все операции осуществляются одновременно и параллельно.
Непрерывные реакторы более производительны из-за того, что нет затрат времени на операции загрузки и выгрузки. Используются в крупнотоннажных производствах.
в) В полупериодических реакторах одни операции осуществляются непрерывно, а другие – периодически.
7) По характеру изменения параметров процесса во времени:
— стационарный режим – протекание химической реакции в произвольно выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов, температуры, скорости и других параметров процесса в любой момент времени (возможен для непрерывных процессов).
— нестационарный – в произвольно выбранной точке происходит изменения параметров химического процесса во времени по тому или иному закону (все периодические процессы).
Дата добавления: 2016-06-02 ; просмотров: 5557 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник