Классификация растворов по способу применения растворитель

Классификация растворов.

1. По характеру растворителя:

2) неводные: растворы в органических растворителях (спирты, эфиры, ацетон, бензол).

2. По точности выражения концентрации: приблизительные, точные и эмпирические.

3. По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные.

4. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Разбавленные растворы — растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы — с большим содержанием растворенного вещества.

5. По агрегатному состоянию растворителя: растворение твёрдых веществ, жидкостей и газов.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями.

Твёрдыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие — в ограниченных (хлорид натрия и вода).

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток.

Растворение веществ сопровождается тепловым эффектом: выделе­нием или поглощением теплоты — в зависимости от природы вещества. При растворении в воде, например, гидроксида калия, серной кислоты наблюдается сильное разогревание раствора, т.е. выделение теплоты, а при растворении нитрата аммония — сильное охлаждение раствора, т.е. поглощение теплоты. В первом случае осуществляется экзотермический процесс (∆H 0). Тепло­та растворения ∆H — это количество теплоты, выделяющееся или поглощающееся при растворении 1 моль вещества. Так, для гидрокси­да калия ∆H ° = -55,65 кДж/моль, а для нитрата аммония ∆H ° = +26,48 кДж/моль.

В результате химического взаимодействия растворенного вещества с растворителем образуются соединения, которые называют сольватами (или гидратами, если растворителем является вода). Образование таких соединений роднит растворы с химическими соединениями.

Растворимость – способность вещества растворяться в том или ином растворителе. Она характеризуется концентрацией насыщенного раствора. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя. Если раствор содержит растворённого вещества больше, чем это соответствует растворимости при данной температуре, то он называется пересыщенным. Возможность существования пересыщенного раствора объясняется трудностью возникновения центров кристаллизации. В случае растворения твердых или жидких веществ в жидкостях растворимость возрастает с повышением температуры, а для газов – убывает. На растворимость газов большое влияние оказывает давление.

Процесс растворения твердого вещества в жидкости протекает следующим образом. Если поместить твердое тело в соответствующий растворитель, от его поверхности постепенно отрываются отдельные молекулы, которые благодаря диффузии равномерно распределяются по всему объему жидкости. Причем отделение молекул от поверхности твердого вещества вызывается двумя причинами: с одной стороны, их собственным движением, а с другой — притяжением со стороны молекул растворителя. В растворах (как и в газах, но только гораздо медленнее) протекают процессы диффузии, благодаря которым создается и поддерживается одинаковая во всем объеме концентрация растворенного вещества. Одновременно с разрушением кристаллической решетки твердого тела происходит взаимодействие между растворителем и растворяемым веществом, при котором выделяется больше тепла, чем его расходуется на разрушение кристаллической решетки.

В процессе растворения большинства веществ их молекулы прочно связываются с молекулами растворителя, образуя сольваты (гидраты, если растворителем является вода). Образование этих соединений обусловлено полярностью молекул растворяемого вещества, благодаря которой они притягивают полярные молекулы растворителя. В большинстве случаев гидраты являются достаточно неустойчивыми соединениями, разлагающимися уже при выпаривании растворов. Но иногда молекулы воды очень прочно связаны с молекулами растворенного вещества, и при выделении последнего из раствора гидратная вода входит в состав его кристаллов (глюкоза, магния сульфат, меди сульфат, квасцы, кодеин, которые являются кристаллогидратами).

Однако наряду с процессом растворения происходит обратный процесс — кристаллизация. При постоянном увеличении концентрации раствора по мере растворения вещества в определенный момент скорость растворения становится равной скорости кристаллизации, т.е. устанавливается состояние динамического равновесия, при котором в единицу времени растворяется столько же молекул, сколько и выделяется обратно из раствора. При этих условиях концентрация раствора перестает увеличиваться, т.е. раствор становится насыщенным.

Великий русский химик Д.И. Менделеев создал химическую теорию растворов, которую он обосновал многочисленными экспериментальными данными, изложенными в его книге «Исследова­ния водных растворов по их удельному весу», вышедшей в 1887 г. «Растворы суть химические соединения, определяемые силами, дейст­вующими между растворителем и растворенным веществом», — писал он в этой книге. Теперь известна природа этих сил. Сольваты (гидра­ты) образуются за счет донорно-акцепторного, ион-дипольного взаимо­действий, за счет водородных связей, а также дисперсионного взаимодействия (в случае растворов родственных веществ, например бензола и толуола).

Таким образом, растворение — не только физический, но и химиче­ский процесс. Растворы образуются путем взаимодействия частиц растворенного вещества с частицами растворителя. Ученик Д.И. Менделеева Д.П. Коновалов всегда подчеркивал, что между химическими соединениями и растворами нет границ.

Источник

Растворы

Авторы: Гаммель И. В., Кононова С. В., Раскаткина Л. В.

I. РАСТВОРЫ. ОСНОВНЫЕ ПОНЯТИЯ.

Раствор – это твердая, жидкая или газообразная однородная система, состоящая из двух или более компонентов.
Раствор – это жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ и предназначенная для внутреннего, наружного или парентерального применения.

1.1. Классификация растворов.

1.1.1. По составу:
а) Простые растворы
б) Сложные растворы

4.1.2. По способу применения:
а) Для внутреннего применения (микстуры, капли)
б) Для наружного применения (капли, примочки, полоскания)

4.1.3. По физико-химической природе:
а) Гомогенные системы
— Истинные растворы
— Растворы высокомолекулярных соединений

Читайте также:  Найти эффективный диаметр молекулы азота двумя способами

б) Гетерогенные системы
— Коллоидные растворы
— Суспензии
— Эмульсии

1.1.4. В зависимости от применяемых растворителей:
а) Водные растворы
б) Спиртовые растворы
в) Масляные растворы
г) Глицериновые растворы
д) Растворы на синтетических растворителях

Преимущества растворов:
1) Высокая биодоступность
2) Широкий спектр назначения
3) Простота приготовления
4) Удобство применения
5) Возможность корригировать вкус, цвет, запах лекарственных веществ.

Недостатки растворов:
1) Неудобство транспортировки (некомпактность упаковки)
2) Возможность микробного загрязнения
3) Вероятность гидролиза лекарственных веществ

1.2. Растворители

Растворители для жидких лекарственных форм – это индивидуальные химические соединения или их смеси, способные растворять различные вещества и образовывать с ними однородные смеси – растворы, состоящие из одного или нескольких компонентов.

Классификация растворителей:
1) Неорганические (вода очищенная)
2) Органические
— Летучие
1. Этиловый спирт
2. Эфир медицинский
3. Хлороформ
— Нелетучие
1. Глицерин
2. Масла растительные
3. Масло вазелиновое
4. Диметилсульфоксид (димексид)

Требования к растворителям:
1. Достаточная растворяющая способность
2. Химическая и фармакологическая индифферентность
3. Безопасность в пожарном отношении
4. Рациональность с точки зрения биофармации
5. Должны быть экономически выгодны и доступны.

1.3. Истинные растворы.

Истинные растворы – это однородные системы, молекулярной или ионной степени дисперсности, то есть лекарственные вещества в ней диспергированы до ионно-молекулярного состояния.

В молекулярно-дисперсных системах размер частиц порядка 0,1 нм. К ним относят: растворы неэлектролитов (сахар, спирт). Растворенное вещество распадается на отдельные кинетические самостоятельные молекулы.

В ионно-дисперсных системах размер частиц порядка 0,1 нм. К ним относят растворы электролитов (натрия хлорид, магния сульфат). Растворенное вещество находится в виде отдельных гидратированных ионов и молекул в некоторых равновесных количествах. Истинные растворы являются однофазными системами, они гомогенны даже при рассматривании в электронный микроскоп и их компоненты не могут быть разделены фильтрованием или каким-либо другим способом.

Лекарственные вещества обладают разной способностью к растворению в воде и других растворителях. Растворимость данного лекарственного вещества в воде (и в другом растворителе) зависит от температуры. Для подавляющего большинства твердых веществ растворимость увеличивается с повышением температуры. Некоторые лекарственные вещества растворяются медленно, с целью ускорения растворения прибегают к нагреванию, предварительному измельчению лекарственного вещества и перемешиванию смеси.

1.4. Концентрация.

Концентрация – это количество вещества, растворенного в определенном количестве растворителя.
В зависимости от метода изготовления раствора содержание лекарственных веществ в жидких лекарственных формах выражают различными способами в соответствии с приказом МЗ РФ № 308 от 21.10.1997.
1) Массо-объемная концентрация – это количество лекарственного вещества (в граммах) в общем объеме лекарственной формы (в мл),
2) Концентрация по массе – это количество лекарственного вещества (в граммах) в общей массе лекарственной формы (в граммах),
3) Объемная концентрация – это количество жидкого лекарственного вещества (в мл) в общем объеме лекарственной формы (в мл).

Способы обозначения концентрации.

В прописях рецептов концентрация может быть обозначена:
1) В процентах (%).
2) Раздельным перечислением лекарственного вещества и дисперсионной среды (растворителя).
3) С указанием растворителя до заданного объема или массы (ad).
4) С указанием соотношения массы или объема растворяемого лекарственного вещества и объема или массы раствора.

1.5. Растворимость.

Растворимостью называют свойство вещества растворяться в воде или других растворителях. В фармацевтической практике растворимость обозначается в виде отношения количества растворенного вещества к количеству насыщенного раствора, которое нужно из него приготовить. В фармацевтической практике используются таблицы растворимости в виде отношения одной массовой части вещества к необходимому количеству растворителя. Сведения о растворимости лекарственных веществ находятся в частных статьях ГФ.

Насыщенный раствор – это раствор, в котором скорость растворения лекарственного вещества и скорость оседания частиц равны.

Факторы, влияющие на растворимость:
1. Природа лекарственного вещества и растворителя
2. Сила связи между молекулами или ионами растворяемого вещества
3. Сила диффузии
4. Сила взаимодействия между веществом и растворителем
5. Температура
6. Степень дисперсности.

Чтобы читать дальше, купите книгу.
Стоимость:

Источник

Лекция 5: Растворы. Свойства растворов. Способы выражения концентрации растворов

Лекция 5: Растворы. Свойства растворов. Способы выражения концентрации растворов.

1. Понятие о растворах. Классификация растворов.

2. Растворимость веществ. Факторы, влияющие на растворимость веществ.

3. Сущность процесса растворения. Термодинамика процесса растворения.

4. Способы выражения концентрации растворов.

5. Коллигативные свойства растворов.

1.Растворы. Классификация растворов.

Раствором называется гомогенная (однородная) система, состоящая из двух или более независимых компонентов (растворенное вещество и растворитель), а также продуктов их взаимодействия. Компонент, количество которого преобладает в данной системе, называют растворителем.

По агрегатному состоянию растворы делятся:

    газообразные растворы: воздух – это раствор кислорода, паров воды, углекислого газа СО2 и благородных газов в азоте; твердые растворы: сплавы металлов; жидкие растворы в свою очередь делятся: растворы твердых веществ в жидкостях: соль+Н2О, сахар+Н2О, йод+Н2О растворы газообразныхых веществ в жидкостях: лимонады, нашатырный спирт

3. растворы жидких веществ в жидкостях: уксус, водка (спирт + вода)

Наибольшее значение для химии имеют растворы, в которых растворителем является жидкость. Относительное содержание компонентов в растворе может быть любым, оно ограничено лишь взаимной растворимостью веществ, которая зависит от их химической природы, их сродства друг к другу, а также от условий приготовления растворов – температуры, давления (в случае растворения газов), присутствия других растворенных веществ.

По относительным количествам растворенного вещества и растворители растворы бывают: разбавленные и концентрированные.

По соотношению преобладания частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и перенасыщенные.

Насыщенный раствор — это раствор, который находится в равновесии с твердой фазой растворенного вещества и содержит максимально возможное при данных условиях количество этого вещества.

Раствор концентрация которого ниже концентрации насыщенного раствора называется ненасыщенным. В таком растворе можно при тех же условиях растворить дополнительное количество того же самого вещества.

Если раствор, насыщенный при нагревании, осторожно охладить до комнатной температуры так, чтобы не выделялись кристаллы соли, то образуется перенасыщенный раствор. Таким образом, перенасыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем возможно в насыщенном растворе. Перенасыщенный раствор нестабилен, и при изменении условий (например при энергичном встряхивании или внесении кристаллика соли – затравки для кристаллизации) образуется насыщенный раствор и осадок кристаллов соли.

2. Растворимость веществ. Факторы, влияющие на растворимость веществ.

Количественной характеристикой соотношения компонентов насыщенного раствора является растворимость. Наиболее распространенными способами такой характеристики служат:

· коэффициент растворимости вещества (Р) – наибольшая масса вещества, способная при данной температуре раствориться в 100 г растворителя. Например, при 20ْ С в 100 г воды с образованием насыщенного раствора растворяется 36,0 г NaCI, значит Р(NaCI) = 36.

Читайте также:  Вернуть любимую женщину действенный способ

· молярная растворимость вещества (S) — число молей вещества, способное при данной температуре раствориться в 1 л указанного растворителя с образованием насыщенного раствора. Так, S(NaCI) = 6,154 моль\л

· коэффициент поглощения газа –наибольший объем газа, который может раствориться в единице объема растворителя при данной температуре и парциальном давлении газа 1 атм. Так при 20ْ С коэффициенты поглощения водой азота и кислорода, молекулы которых неполярны, составляют соответственно 0,016 и 0,031. Для газов, молекулы которых полярны, коэффициент их поглощения водой значительно выше, например для HCI – 500, NH3 – 1300.

Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления.

Зависимость от природы реагирующих веществ

Наибольшая растворимость достигается тогда, когда эти силы межмолекулярного взаимодействия имеют подобный характер: «подобное растворяется в подобном». Так вещества с ионным типом химической связи (соли, щелочи) или, полярные (спирты, альдегиды) хорошо растворимы в полярных растворителях, например в воде. И наоборот малополярные соединения, например оксид углерода (II) хорошо растворимы в неполярных соединениях, например в сероуглероде.

Зависимость от температуры.

Так как растворение процесс обратимый, значит к нему применим принцип Ле-Шателье: если растворение вещества происходит с поглощением теплоты, то повышение температуры приводит к увеличению растворимости.

Для большинства твердых веществ повышение температуры способствует увеличению растворимости.

Для газов повышение температуры способствует уменьшению растворимости, так как связи между молекулами растворимого вещества и растворителя — непрочные.

3. Сущность процесса растворения. Термодинамика процесса растворения.

Растворение веществ часто происходит с выделением или поглощением теплоты, иногда с изменением объема. Основоположником теории растворов является . Сущность процесса растворения сводится к следующему:

    В растворах между компонентами раствора имеется взаимодействие, что приводит к образованию нестойких соединений переменного состава. Эти соединения растворенного вещества и растворителя называется сольватами, если растворитель – вода, то их называют гидратами. Раствор является динамической системой, в котором распадающиеся соединения находятся в подвижном равновесии с продуктами распада в соответствии с законом действующих масс. Сольватация (гидратация) обусловлена силами Ван-дер-Ваальса, действующими между растворенными веществом и растворителем. Сольватация протекает тем лучше, чем более полярны молекулы, составляющие раствор. Вода — хороший растворитель, так как её молекулы сильно полярны. Гидратная вода может быть связана с молекулами твердого вещества и входить в состав кристаллов (кристаллогидраты): CuSO4 ∙ 5 H2O –медный купорос, CaSO4 ∙ 2 H2O – гипс.

Процесс растворения можно выразить схемой:

растворенное вещество + растворитель ó вещество в растворе ± ∆ Н.

Тепловой эффект, сопровождающий процесс растворения, относящийся к 1 молю растворенного вещества называется молярной теплотой растворения ∆ Н раств.

Н 1 > 0 количество теплоты, затраченной на распределение частиц растворяемого вещества среди молекул растворителя (процесс эндотермический).

∆Н 2 0 энергия необходимая для разрушения кристаллической решетки и энергия необходимая для разрыва связей между молекулами растворителя (процесс эндотермический).

В зависимости от того преобладает первая или вторая составляющие, процесс растворения может быть экзотермический или эндотермический:

если │ ∆Н2 │> │∆ Н1│, процесс экзотермический и ∆Н 0.

4. Способы выражения состава растворов.

Состав растворов количественно принято выражать через безразмерные количественные величины – доли (массовую, объемную, молярную) и размерные величины – концентрации.

Массовая доля (W) или процентная концентрация — отношение массы растворенного вещества к массе раствора. Массовая доля – безразмерная величина, ее выражают в долях от единицы в процентах (10%). Массовая доля показывает, сколько граммов данного вещества, находится в 100 г раствора

mв-ва — масса растворенного вещества, г

mв-ва — масса раствора, г

m р-ля — масса растворителя, г.

W (NaOH) = 5% или 0,05 означает, что

5 г NaOH находится в 100г раствора,

5 г NaOH находится в 95 г воды

Объемная доля j отношение объема растворенного вещества к объему раствора.

Молярная доля N отношение числа молей растворенного вещества к сумме числа молей растворенного вещества и растворителя.

Концентрация показывает отношение массы или количества вещества к объему раствора.

Молярная концентрация (молярность) См (моль/л) – показывает число молей растворенного вещества в одном литре раствора, выражается отношением количества растворенного вещества к объему раствора.

См-молярная концентрация раствора.

ma — масса вещества в граммах

Ma – молярная масса вещества в г/моль

V – объем раствора в литрах

Для обозначения молярной концентрации применяются символы:

1М-одномолярный раствор См = 1 моль/л

0,1М-децимолярный раствор См = 0,1 моль/л

Раствор в котором содержится 1 моль растворенного вещества называется одномолярным.

2М раствор NaOH означает, что 2 моля NaOH содержится в 1 литре раствора, т. е 2* 40 = 80 г NaOH.

Нормальная концентрация (нормальность раствора) или молярная концентрация эквивалента, Сн (экв/л) – показывает число эквивалентов растворенного вещества, содержащихся в одном литре раствора.

Сн нормальная концентрация [моль/л]

М эква – эквивалентная масса вещества в г/моль

ma — масса вещества в граммах

V – объем раствора в литрах

1Н — однонормальный раствор Сн =1 моль/л

0,1Н — децинормальный раствор Сн=0,1 моль/л

0,01Н — сантинормальный раствор Сн = 0,01 моль/л

Эквивалентом вещества называется реальная или условная частица вещества, которая может замещать, присоединять, высвобождаться или быть каким-либо образом эквивалентна (равнозначна) одному катиону H водорода в кислотно-основных растворах или одному электрону в окислительно-восстановительных реакциях. Число, показывающее, какая доля реальной частицы вещества эквивалентна одному катиону H или одному электрону называется фактором эквивалентности ( f экв ). Количество эквивалента (n экв) также как и количество вещества измеряется в молях. Масса одного моля эквивалента называется молярной массой эквивалента (Мэкв) также как и молярная масса измеряется в г/моль. Между собой эти две массы связаны следующим соотношением:

n(Н ) – число ионов водорода, способных замещаться на металл (основность кислоты)

n(ОН ) – число ионов гидроксогрупп (кислотность основания)

f экв = число атомов металла * заряд иона металла

С учетом фактора эквивалентности:

Титр раствора Т показывает массу растворенного вещества, содержащуюся в 1 мл раствора.

Моляльная концентрация (моляльность Сm) отношение количества растворенного вещества к массе растворителя, выраженой в килограммах.

1000 — коэффициент перевода граммов в килограммы

Коллигативные свойства растворов.

Свойства растворов, которые зависят только от концентрации частиц в растворе и не зависят от природы растворенного вещества, называются коллигативными.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

Читайте также:  Патент способ получения диоксида титана

Коллигативные свойства разбавленных растворов могут быть описаны количественно и выражены в виде законов. К ним относятся:

· давление насыщенного пара растворителя над раствором

· температура кристаллизации раствора

· температура кипения раствора

Осмос. Осмотическое давление.

Растворы однородны по всем частям объема. Если в один сосуд поместить концентрированный раствор, а сверху разбавленный, то через некоторое время эта неоднородная масса вновь станет однородной. Такой самопроизвольный процесс перемешивания вещества, приводящий к выравниванию его концентрации называется диффузией.

Если между двумя растворами поместить полупроницаемую перегородку (мембрану), то выравнивание концентраций будет проходить только вследствие перемещения молекул воды. Такая односторонняя диффузия называется осмосом.

Осмос – односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую перегородку из раствора с низкой концентрацией в раствор с более высокой концентрацией.

Полупроницаемые перегородки способны пропускать только молекулы растворителя, но не пропускают молекулы растворенного вещества.

природные полупроницаемые перегородки — стенки растительных и животных клеток, стенки кишечника;

искусственные полупроницаемые перегородки – целлофан, пергамент, пленки из желатина.

Количественной характеристикой осмоса является осмотическое давление раствора.

Осмотическим давлением (Pосм.) называют избыточное гидростатическое давление, возникающее в результате осмоса и приводящее к выравниванию скоростей взаимного проникновения молекул растворителя сквозь мембрану с избирательной проницаемостью.

К осмотическому давлению применимы все законы газового давления и для его вычисления можно использовать уравнение Клапейрона — Менделеева m

В 1887 г Вант-Гоффом в результате исследований была установлена такая зависимость:

См –молярная концентрация растворенного вещества, моль/л

R – универсальная газовая постоянная, 8,314 Дж/моль* К

T – температура, К.

Осмотическое давление разбавленного идеального раствора неэлектролита равно тому давлению, которое производило бы растворенное вещество, если бы при той же температуре находилось бы в газообразном состоянии и занимало бы объем, равный объему раствора.

Однако это уравнение справедливо только для растворов, в которых отсутствует взаимодействие частиц, т. е. для идеальных растворов. В реальных растворах имеют место межмолекулярные взаимодействия между молекулами вещества и растворителя, которые могут приводить или к диссоциации молекул растворенного вещества на ионы, или к ассоциации молекул растворенного вещества с образованием из них ассоциатов.

Диссоциации молекул растворенного вещества в водном растворе на ионы характерна для электролитов. В результате диссоциации число частиц в растворе увеличивается.

Ассоциация наблюдается, если молекулы вещества лучше взаимодействуют между собой, чем с молекулами растворителя. Это характерно для коллоидных растворов, что приводит к уменьшению числа частиц в растворе.

Для учета межмолекулярных взаимодействий в реальных растворах Вант-Гофф предложил использовать изотонический коэффициент i. Для молекул растворенного вещества физический смысл изотонического коэффициента:

i = число частиц растворенного вещества / число частиц исходного вещества.

Для растворов неэлектролитов, молекулы которых не диссоциируют и мало склонны к ассоциации, i =1.

Для водных растворов электролитов, вследствие диссоциации i > 1, причем максимальное его значение (i max) для данного электролита равно числу ионов в его молекуле:

NaCI CaCI2 Na3PO4

Для растворов, в которых вещество находится в виде ассоциатов, i 1 для электролитов.

Изотонические растворы – имеют равное осмотическое давление. Гипертонические растворы– имеют большее осмотическое давление по сравнению с другим раствором. Гипотонические растворы – имеют меньшее осмотическое давление по сравнению с другим раствором.

Роль осмоса. СРС.

Понижение давление пара растворов. Законы Рауля.

Над любой жидкостью устанавливается определенное давление пара, насыщающего пространство. В отличии от поверхности растворителя, поверхность раствора частично занята молекулами растворенного вещества. Именно поэтому испарение с поверхности растворов всегда меньше, чем с поверхности растворителя, и при одной и той же температуре давление насыщенного пара над раствором всегда будет ниже давления пара над чистым растворителем.

. Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе

p — давление пара над раствором, Па;

p0 — давление пара над чистым растворителем, Па;

χр-ль — мольная доля растворителя.

nв-ва и nр-ля – соответственно количество растворенного вещества и растворителя, моль.

относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества:

• При этом принимаем, что χв-ва + χр-ль = 1

Для растворов электролитов данное уравнение приобретает несколько иной вид, в его состав входит изотонический коэффициент i:

Δp = i · p0 · χв-ва, где

• Δp — изменение давления паров раствора по сравнению с чистым растворителем;

• χв-ва — мольная доля вещества в растворе

• i – изотонический коэффициент.

i =1 для неэлектролитов, i > 1 для электролитов.

Изотонический коэффициент (или фактор Вант-Гоффа) — это параметр, не имеющий размерности, который характеризует поведение какого – либо вещества в растворе. То есть, изотонический коэффициент показывает, разницу содержания частиц в растворе электролита по сравнению с раствором неэлектролита такой же концентрации. Он тесно связан связан с процессом диссоциации, точнее, со степенью диссоциации и выражается следующим выражением:

n – количество ионов, на которые диссоциирует вещество.

α – степень диссоциации.

С понижением давления насыщенного пара растворителя над раствором связано повышение температуры кипения раствора и понижение температуры его замерзания. Любая жидкость кипит, когда давление насыщенного пара над ней становится равным атмосферному. Так как согласно I закону Рауля давление пара над раствором меньше, чем над раствором растворителя, то для того, чтобы раствор закипел, его нужно нагреть до более высокой температуры, чем растворитель. Таким образом, растворы кипят при более высокой температуре, а замерзают при более низкой температуре, чем чистый растворитель.

Разность температур кипения раствора и растворителя называется повышением температуры кипения.

Разность температур замерзания раствора и растворителя называется понижением температуры замерзания.

Понижение температуры замерзания и повышение температуры кипения не зависят от природы растворенного вещества и прямопропорциональны моляльной концентрации раствора.

Кэб – эбулиоскопическая константа

Ккр – криоскопическая константа

Cm – моляльная концентрация раствора [моль/кг растворителя]

i- изотонический коэффициент, i =1 для неэлектролитов, i > 1 для электролитов.

Кэб – эбулиоскопическая константа

Ккр – криоскопическая константа

Физический смысл:

Эбулиоскопическая константа (Кэб) – показывает повышение температуры кипения одномоляльного раствора по сравнению с чистым растворителем.

Криоскопическая константа (Ккр) – показывает понижение температуры замерзания одномоляльного раствора по сравнению с чистым растворителем.

Все одномоляльные растворы неэлектролитов будут

кипеть при температуре: t кип = 100 С + 0,52 С = 100,52 С

и замерзать при температуре: t зам = 0 С– 1,86 С = — 1,86 С

Пример. Вычислить температуру кипения и температуру замерзания 4,6% раствора глицерина (С3 Н5 (ОН)3) в воде.

В 100г воды содержится 4,6г глицерина и 95,4г воды.

Источник

Оцените статью
Разные способы