Классификация по способу обработки потоков

Классификация по способу обработки потоков

По-видимому, самой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М. Флинном (1) [26]. Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных Флинн выделяет четыре класса архитектур: SISD, MISD, SIMD, MIMD.

SISD (single instruction stream / single data stream) — одиночный поток команд и одиночный поток данных (рис. 4, а). К этому классу относятся, прежде всего, классические последовательные машины, или иначе, машины фон-неймановского типа, например, PDP-11 или VAX 11/780. Первой отечественной ЭВМ была МЭСМ (малая электронная счетная машина), выпущенная в 1951 г. под руководством Сергея Александровича Лебедева. Её номинальное быстродействие –50 операций в секунду.

В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом, и каждая команда инициирует одну операцию с одним потоком данных. Не имеет значения тот факт, что для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка — как машина CDC 6600 со скалярными функциональными устройствами, так и CDC 7600 с конвейерными попадают в этот класс.

SIMD (single instruction stream / multiple data stream) — одиночный поток команд и множественный поток данных (рис. 4, б). В архитектурах подобного рода сохраняется один поток команд, включающий, в отличие от предыдущего класса, векторные команды. Это позволяет выполнять одну арифметическую операцию сразу над многими данными — элементами вектора.

Способ выполнения векторных операций не оговаривается, поэтому обработка элементов вектора может производиться либо процессорной матрицей, как в ILLIAC IV, либо с помощью конвейера, как, например, в машине CRAY-1.

MISD (multiple instruction stream / single data stream) — множественный поток команд и одиночный поток данных (рис. 4, в). Определение подразумевает наличие в архитектуре многих процессоров, обрабатывающих один и тот же поток данных. Однако ни Флинн, ни другие специалисты в области архитектуры компьютеров до сих пор не смогли представить убедительный пример реально существующей вычислительной системы, построенной на данном принципе.

Ряд исследователей относят конвейерные машины к данному классу, однако это не нашло окончательного признания в научном сообществе. Будем считать, что пока данный класс пуст.

MIMD (multiple instruction stream / multiple data stream) — множественный поток команд и множественный поток данных (рис. 4, г).

Рис. 4. УУ – управляющее устройство (организует поток команд), ПР – процессор, ПД – поток данных

Этот класс предполагает, что в вычислительной системе есть несколько устройств обработки команд, объединенных в единый комплекс и работающих каждое со своим потоком команд и данных.

Итак, что же собой представляет каждый класс? В SISD, как уже говорилось, входят однопроцессорные последовательные компьютеры типа VAX 11/780. Однако многими критиками подмечено, что в этот класс можно включить и векторно-конвейерные машины, если рассматривать вектор как одно неделимое данное для соответствующей команды. В таком случае в этот класс попадут и такие системы, как CRAY-1, CYBER 205, машины семейства FACOM VP и многие другие.

Бесспорными представителями класса SIMD считаются матрицы процессоров: ILLIAC IV, ICL DAP, Goodyear Aerospace MPP, Connection Machine 1 и т.п. В таких системах единое управляющее устройство контролирует множество процессорных элементов. Каждый процессорный элемент получает от устройства управления в каждый фиксированный момент времени одинаковую команду и выполняет ее над своими локальными данными. Для классических процессорных матриц никаких вопросов не возникает, однако в этот же класс можно включить и векторно-конвейерные машины, например, CRAY-1. В этом случае каждый элемент вектора надо рассматривать как отдельный элемент потока данных.

Читайте также:  Способы очистки газов от вредных примесей

Класс MIMD чрезвычайно широк, поскольку включает в себя всевозможные мультипроцессорные системы: Cm*, C.mmp, CRAY Y-MP, Denelcor, BBN Butterfly, Intel Paragon, CRAY T3D и многие другие. Интересно то, что если конвейерную обработку рассматривать как выполнение множества команд (операций ступеней конвейера) не над одиночным векторным потоком данных, а над множественным скалярным потоком, то все рассмотренные выше векторно-конвейерные компьютеры можно расположить и в данном классе.

Предложенная схема классификации вплоть до настоящего времени является самой применяемой при начальной характеристике того или иного компьютера. Если говорится, что компьютер принадлежит классу SIMD или MIMD, то сразу становится понятным базовый принцип его работы, и в некоторых случаях этого бывает достаточно. Однако видны и явные недостатки. В частности, некоторые заслуживающие внимания архитектуры, например, dataflow и векторно-конвейерные машины, четко не вписываются в данную классификацию. Другой недостаток — это чрезмерная заполненность класса MIMD. Необходимо средство, более избирательно систематизирующее архитектуры, которые по Флинну попадают в один класс, но совершенно различны по числу процессоров, природе и топологии связи между ними, по способу организации памяти и, конечно же, по технологии программирования.

Наличие пустого класса (MISD) не стоит считать недостатком схемы. Такие классы, по мнению некоторых исследователей в области классификации архитектур, могут стать чрезвычайно полезными для разработки принципиально новых концепций в теории и практике построения вычислительных систем.

(1) Михаэль Флинн (Michael J. Flynn) – с 1955 года работал в компании IBM, где занимался вопросами организации компьютера. Он был менеджером проекта по разработке прототипа ЭВМ IBM7090. В 1961 году Флинн получил ученую степень доктора наук, а в 1975 стал профессором Стэнфордского университета. За свой большой вклад в развитие электроники и компьютерных архитектур Флинн получил множество премий и наград. Автор трех книг и более чем 250 технических статей.

Источник

Классификация по способу обработки потоков

Параллельные вычислительные системы — это физические компьютерные, а также программные системы, реализующие тем или иным способом параллельную обработку данных на многих вычислительных узлах.

Идея распараллеливания вычислений основана на том, что большинство задач может быть разделено на набор меньших задач, которые могут быть решены одновременно. Обычно параллельные вычисления требуют координации действий. Параллельные вычисления существуют в нескольких формах: параллелизм на уровне битов, параллелизм на уровне инструкций, параллелизм данных, параллелизм задач. Параллельные вычисления использовались много лет в основном в высокопроизводительных вычислениях, но в последнее время к ним возрос интерес вследствие существования физических ограничений на рост тактовой частоты процессоров. Параллельные вычисления стали доминирующей парадигмой в архитектуре компьютеров, в основном в форме многоядерных процессоров.

Параллелизм на уровне битов:

Эта форма параллелизма основана на увеличении размера машинного слова. Увеличение размера машинного слова уменьшает количество операций, необходимых процессору для выполнения действий над переменными, чей размер превышает размер машинного слова.

Параллелизм на уровне инструкций:

Компьютерная программа — это, по существу, поток инструкций, выполняемых процессором. Но можно изменить порядок этих инструкций, распределить их по группам, которые будут выполняться параллельно, без изменения результата работы всей программы.

Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Различные фрагменты такого массива обрабатываются на векторном процессоре или на разных процессорах параллельной машины. Распределением данных между процессорами занимается программа. Векторизация или распараллеливание в этом случае чаще всего выполняется уже на этапе компиляции — перевода исходного текста программы в машинные команды. Роль программиста в этом случае обычно сводится к заданию настроек векторной или параллельной оптимизации компилятору, директив параллельной компиляции, использованию специализированных языков для параллельных вычислений.

Читайте также:  Способ сложения методом гаусса

Параллелизм задач (многопоточность):

Стиль программирования, основанный на параллелизме задач, подразумевает, что вычислительная задача разбивается на несколько относительно самостоятельных подзадач и каждый процессор загружается своей собственной подзадачей.

Классификация параллельных вычислительных систем

Общая классификация архитектур ЭВМ по признакам наличия параллелизма в потоках команд и данных. Была предложена в 70-е годы Майклом Флинном (Michael Flynn). Все разнообразие архитектур ЭВМ в этой таксономии Флинна сводится к четырем классам:

· ОКОД — Вычислительная система с одиночным потоком команд и одиночным потоком данных

· (SISD, Single Instruction stream over a Single Data stream).

· ОКМД — Вычислительная система с одиночным потоком команд и множественным потоком данных

· (SIMD, Single Instruction, Multiple Data).

· МКОД — Вычислительная система со множественным потоком команд и одиночным потоком данных

· (MISD, Multiple Instruction Single Data).

· МКМД — Вычислительная система со множественным потоком команд и множественным потоком данных

· (MIMD, Multiple Instruction Multiple Data).

Типичными представителями SIMD являются векторные архитектуры. К классу MISD ряд исследователей относит конвейерные ЭВМ, однако это не нашло окончательного признания, поэтому можно считать, что реальных систем — представителей данного класса не существует. Класс MIMD включает в себя многопроцессорные системы, где процессоры обрабатывают множественные потоки данных.

Отношение конкретных машин к конкретному классу сильно зависит от точки зрения исследователя. Так, конвейерные машины могут быть отнесены и к классу SISD (конвейер — единый процессор), и к классу SIMD (векторный поток данных с конвейерным процессором) и к классу MISD (множество процессоров конвейера обрабатывают один поток данных последовательно), и к классу MIMD — как выполнение последовательности различных команд (операций ступеней конвейера) на множественным скалярным потоком данных (вектором).

Источник

Архитектура вычислительных систем. Классификация архитектур по параллельной обработке данных

Чтобы дать более полное представление о многопроцессорных вычислительных системах, помимо высокой производительности необходимо назвать и другие отличительные особенности. Прежде всего, это необычные архитектурные решения, направленные на повышение производительности (работа с векторными операциями, организация быстрого обмена сообщениями между процессорами или организация глобальной памяти в многопроцессорных системах и др.).

Понятие архитектуры высокопроизводительной системы является достаточно широким, поскольку под архитектурой можно понимать и способ параллельной обработки данных , используемый в системе, и организацию памяти , и топологию связи между процессорами, и способ исполнения системой арифметических операций. Попытки систематизировать все множество архитектур впервые были предприняты в конце 60-х годов и продолжаются по сей день.

В 1966 г. М.Флинном (Flynn) был предложен чрезвычайно удобный подход к классификации архитектур вычислительных систем. В его основу было положено понятие потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. Соответствующая система классификации основана на рассмотрении числа потоков инструкций и потоков данных и описывает четыре архитектурных класса:

SISD (single instruction stream / single data stream ) – одиночный поток команд и одиночный поток данных . К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор , способный обрабатывать только один поток последовательно исполняемых инструкций. В настоящее время практически все высокопроизводительные системы имеют более одного центрального процессора, однако каждый из них выполняет несвязанные потоки инструкций , что делает такие системы комплексами SISD -систем, действующих на разных пространствах данных. Для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка . В случае векторных систем векторный поток данных следует рассматривать как поток из одиночных неделимых векторов. Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и Sun Microsystems.

Читайте также:  Деньги будут способ оплаты

MISD (multiple instruction stream / single data stream ) – множественный поток команд и одиночный поток данных . Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных . До сих пор ни одной реальной машины, попадающей в данный класс , создано не было. В качестве аналога работы такой системы, по-видимому, можно рассматривать работу банка. С любого терминала можно подать команду и что-то сделать с имеющимся банком данных. Поскольку база данных одна, а команд много, мы имеем дело с множественным потоком команд и одиночным потоком данных .

SIMD (single instruction stream / multiple data stream ) – одиночный поток команд и множественный поток данных . Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD -машин являются системы CPP DAP , Gamma II и Quadrics Apemille. Другим подклассом SIMD -систем являются векторные компьютеры. Векторные компьютеры манипулируют массивами сходных данных подобно тому, как скалярные машины обрабатывают отдельные элементы таких массивов. Это делается за счет использования специально сконструированных векторных центральных процессоров . Когда данные обрабатываются посредством векторных модулей, результаты могут быть выданы на один, два или три такта частотогенератора (такт частотогенератора является основным временным параметром системы). При работе в векторном режиме векторные процессоры обрабатывают данные практически параллельно, что делает их в несколько раз более быстрыми, чем при работе в скалярном режиме. Примерами систем подобного типа являются, например, компьютеры Hitachi S3600.

MIMD (multiple instruction stream / multiple data stream ) – множественный поток команд и множественный поток данных . Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных . В отличие от упомянутых выше многопроцессорных SISD -машин, команды и данные связаны, потому что они представляют различные части одной и той же задачи. Например, MIMD -системы могут параллельно выполнять множество подзадач с целью сокращения времени выполнения основной задачи. Большое разнообразие попадающих в данный класс систем делает классификацию Флинна не полностью адекватной. Действительно, и четырехпроцессорный SX-5 компании NEC, и тысячепроцессорный Cray T3E попадают в этот класс . Это заставляет использовать другой подход к классификации, иначе описывающий классы компьютерных систем. Основная идея такого подхода может состоять, например, в следующем. Будем считать, что множественный поток команд может быть обработан двумя способами: либо одним конвейерным устройством обработки, работающем в режиме разделения времени для отдельных потоков, либо каждый поток обрабатывается своим собственным устройством. Первая возможность используется в MIMD -компьютерах, которые обычно называют конвейерными или векторными, вторая – в параллельных компьютерах . В основе векторных компьютеров лежит концепция конвейеризации, т.е. явного сегментирования арифметического устройства на отдельные части, каждая из которых выполняет свою подзадачу для пары операндов. В основе параллельного компьютера лежит идея использования для решения одной задачи нескольких процессоров, работающих сообща, причем процессоры могут быть как скалярными, так и векторными.

Классификация архитектур вычислительных систем нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании МВС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.

Источник

Оцените статью
Разные способы