- Классификация измерений
- Классификация измерений. 1. По способу получения информации существует 4 вида — прямые, косвенные, совокупные и совместные измерения
- Лекция 2. Виды и методы измерений
- Описание
- Оглавление
- 1. Основные понятия и определения. Виды измерений
- 2. Методы измерений
- 3. Понятие о точности измерений
- 4. Основы обеспечения единства измерений
Классификация измерений
Все измерения классифицируют (рис. 8.2):
• по способу получения информации;
• по характеру изменения получаемой информации в процессе измерения;
• по количеству измерительной информации;
• по отношению к основным единицам.
Рис. 8.2 Классификация измерений
По способу получения информации измерения разделяютсяна следующие виды:
1. Прямые измерения, при которых искомое значение измеряемой величины получают непосредственно (путем сравнения величины с ее единицей). При прямых измерениях объект исследования приводят во взаимодействие со средством измерений и по его показаниям отсчитывают значение измеряемой величины.
К прямым измерениям относятся измерение массы при помощи весов и гирь, силы тока — амперметром, температуры — термометром, измерение длины — линейкой.
2. Косвенные измерения, при которых искомое значение величины определяют на основании прямых измерений других величин, функционально связанных известной зависимостью с искомой величиной. Например, плотность тела можно определить по результатам измерений массы т и объема V:
ρ (8.1)
а скорость при равномерном движении — по результатам измерений пройденного пути S и времени τ:
(8.2)
3. Совокупные измерения, при которых одновременно проводятся измерения нескольких одноименных величин и искомое значение величины, определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях, при этом число уравнений должно быть не меньше числа величин. Например, значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.
4. Совместные измерения, при которых одновременно проводятся измерения двух или нескольких не одноименных величин для определения зависимости между ними, например, зависимость длины объекта от температуры.
По характеру изменения получаемой информациив процессе измерений измерения подразделяются на статические и динамические.
Статические измерения — это такие измерения, когда измеряемая величина принимается за неизменную на протяжении времени измерения, например, измерение размеров земельного участка.
Динамическое измерение — это измерение, в процессе которого измеряемая величина изменяется.
Развитие средств измерений и повышение их чувствительности позволяет сегодня обнаружить изменение величин, ранее считавшихся постоянными, поэтому разделение измерений на динамические и статические можно считать условным.
По количеству измерительной информацииизмерения делятся на однократные и многократные.
Однократные измерения выполняются один раз, а многократные позволяют получить результат из нескольких следующих друг за другом измерений одного и того же объекта. При однократных измерениях показания средств измерений являются результатом измерений, погрешность используемого средства измерений определяет погрешность результата измерения. Применение многократных измерений позволяет повысить точность измерения до определенного предела.
По отношению к основным единицамизмерения делятся на абсолютные и относительные.
Абсолютные измерения основаны на прямых измерениях одной или нескольких основных величин или использовании значений физических констант. Например, определение массы в килограммах, количества вещества—в молях, частоты — в герцах.
Относительные измерения — это измерения отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную. Например, относительная влажность определяется как отношение упругости водяного пара, содержащегося в воздухе, к упругости насыщенного пара при той же температуре, и выражается в процентах.
Источник
Классификация измерений. 1. По способу получения информации существует 4 вида — прямые, косвенные, совокупные и совместные измерения
1. По способу получения информации существует 4 вида — прямые, косвенные, совокупные и совместные измерения. Прямые — искомое значение определяется непосредственным сравнением с мерой (линейка, вольтметр). Косвенные — искомое значение определяется по результатам прямых измерений других величин, связанных с искомой известной зависимостью (мощность как результат измерения силы тока и напряжения). Совокупные — искомое значение определяется решением системы уравнений по результатам прямых (или косвенных) измерений нескольких однородных величин (взаимоиндуктивнoсть между двумя катушками со сложением и вычитанием магнитных полей). Совместные — нахождение зависимости между несколькими неоднородными физическими величинами (температурная зависимость сопротивления терморезистора с определением коэффициентов уравнения для различных температур).
2. По характеру изменения измеряемой величины в процессе измерений существует 3 вида — статические, динамические и статистические.
3. По количеству измерительной информации — однократные и многократные.
4. По отношению к основным единицам — абсолютные (как правило, прямые измерения основных физических величин), относительные (отношения однородных величин).
5. По точности определения результата измерения — эталонные, рабочие.
Классификация средств измерений, реализующих по совокупности виды измерений, описанные выше.
1. Основным видом средств измерений является мера, предназначенная для воспроизведения физической величины заданного размера (гиря, лампа, генератор). Меры бывают однозначные, многозначные (линейка) и в виде набора (плоскопараллельных концевых мер длины). Особый класс мер — стандартные образцы состава и свойств веществ и материалов, особенно величины для физико-химических измерений в металлургии, медицине, экологии, производстве продуктов и т. п.
2. Измерительные приборы, которые предназначены для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. По способу измерения информации приборы делятся на прямого действия (амперметр, термометр) и сравнения (весы, потенциометр), а по способу образования показаний — на показывающие и регистрирующие. Приборы существуют как в аналоговом, так и в цифровом исполнениях.
3. Измерительные преобразователи предназначены для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения. Как правило, эта информация не поддается непосредственному восприятию наблюдателем. преобразователь, стоящий первым в измерительной цепи, обычно называется первичным (термопара, сужающее устройство). Если первичный преобразователь имеет конструктивную самостоятельность и нормированную функцию преoбразования, то его называют датчиком. Как правило, датчики преобразуют неэлектрические величины в электрические. Существует огромный класс промежуточных (вторичных) преобразователей, которые, как правило, не меняют род физической величины. Широко известны аналоговые, аналого-цифровые (АЦП) и цифро-аналоговые (ЦАП) преобразователи.
4. измерительные установки и системы — большой постоянно расширяющийся вид, представляет собой совокупность функционально объединенных средств измерений и вспомогательных устройств (АИС — автоматизированная измерительная система, ИИС — информационно-измерительная система, ИВК — измерительно-вычислительный комплекс).
5. Вспомогательные устройства, служащие для обеспечения операций измерений, передачи и обработки информации и т. п. (источники питания, коммутаторы, усилители, термостаты и пр.), составляют вид измерительных принадлежностей.
В последнее время в законодательной метрологии под влиянием двух процессов — сертификации продукции, с одной стороны, и испытаний с целью утверждения типа, — с другой, возникают два новых наименования видов — «модуль» и «семейство». Считается, что «модуль» может быть прибором с самостоятельными характеристиками, и «семейство модулей» может составить новое средство измерений, структура которого легко модифицируется. Таким образом, несколько расширяется вид «установки и системы». Что касается «семейства», то этот вид имеет перспективу распространения на средства измерений одного типа, имеющие единую конструктивную основу, но различающуюся по диапазону измеряемой физической величины, и составляющие некоторую гамму средств измерений, перекрывающую какой-то диапазон значений.
3. Допуски, посадки, основные отклонения, квалитеты и их обозначения. Система вала и система отверстия.
4. Система единиц физических величин СИ.
Важное условие практического использования результата измерения, т. е. экспериментального определения какой-либо физической величины, — количественное представление этой физической величины в выбранной системе единиц. Долгое время в различных странах употреблялись различные системы единиц, спонтанно возникшие чаще всего из конкретных потребностей практики.
Особые единицы имели не только различные государства, часто и в пределах одной страны использовались разные единицы; так, например, во Франции каждый феодал имел право устанавливать свои меры. В справочнике инженера Н. И. Лепина, изданном для строителей и широко распространенном в дореволюционной России, можно обнаружить определения 100 различных футов, 46 различных миль, 120 различных фунтов и т.п.
Идею построения единой системы единиц на десятичной основе впервые высказал французский астроном Мутон, живший в XVII в. Немецкий математик Гаусс предложил систему единиц: миллиметр—миллиграмм—секунда. Система эта в свое время получила достаточно большое распространение и известна ныне как «абсолютная система единиц».
Потребности в унификации систем единиц привели к тому, что в 1954 г. Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина и свеча) практической системы единиц для международного обращения. В то же время на конференции была сформирована комиссия по разработке Международной системы единиц. Соответствующий проект был принят Международным комитетом по мерам и весам в том же году и в I960 г. утвержден XI Генеральной конференцией по мерам и весам. Принятие Международной системы единиц, (СИ) явилось важным этапом развития мировой метрологической науки. В 1961 г. Государственный комитет стандартов, мер и измерительных приборов Совета Министров СССР утвердил ГОСТ 9867—01, названный «Международная система единиц».
Международная система единиц позволила согласовать коэффициенты пропорциональности в уравнениях, выражающих основные законы физики. Были унифицированы основные и производные единицы для всех областей пауки и техники, к которым данное конкретное исследование (теоретическое или экспериментальное) относится. Вообще она очень удобна для всех видов человеческой деятельности.
Международная система единиц (СИ) построена на шести основных единицах и двух дополнительных. Три первые основные единицы (метр, килограмм, секунда) позволяют образовать производные единицы для всех величин, имеющих чисто механическую природу, а три остальные основные единицы (ампер, градус Кельвина, свеча) дают возможность образовать производные единицы для величин, не сводимых к механическим явлениям: ампер — для электрических и магнитных величин, градус Кельвина — для тепловых величин, свеча — для величин в области фотометрии.
Угловые единицы (радиан и стерадиан) не могут быть введены в число основные, так как это вызвало бы затруднения в трактовке размерностей величин, связанных с вращением (дуги окружности, площади круга, работы пары сил и т.д.). По существу эти единицы являются производными, хотя и с той особенностью, что имеют одинаковый размер в различных системах единиц.
В табл. 2 и 3 даны перечни основных, дополнительных и производных единиц.
Определения основных и дополнительных единиц.
Метр—длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона 86.
В 1791 г., при установлении метрической системы мер, метр был определен как одна десятимиллионная часть четверти парижского меридиана. Такое определение метра было продиктовано стремлением обеспечить неизменность и воспроизводимость единицы длины. По данным измерений части меридиана был изготовлен эталон метра в виде платиновой концевой меры, получившей в дальнейшем название «метр Архива». Однако в 1872 г. комиссия по прототипам метрической системы приняла рекомендацию определить метр длиной этого эталона, т. е. заменить «естественный» эталон метра искусственным, условным, из-за возможных расхождений при повторных измерениях части меридиана вследствие неизбежных погрешностей и отсутствия точных данных о фигуре Земли. Позднее были изготовлены платино-иридисвые штриховые эталоны метра для раздачи странам, подписавшим метрическую конвенцию, и один из них, а именно метр № 6, длина которого оказалась равной длине метра Архива, был утвержден в качестве международного прототипа метра.
Однако ширина штрихов, устанавливающих длину метра, составляла около 10 мкм, поэтому с помощью прототипа нельзя было определить метр с погрешностью, меньшей 0,1 мкм.
5. Классификация измерений. Понятие о точности измерений.
Источник
Лекция 2. Виды и методы измерений
Сайт: | MOODLE — Виртуальная среда обучения КНИТУ (КХТИ) |
Курс: | Метрология, стандартизация и сертификация |
Книга: | Лекция 2. Виды и методы измерений |
Напечатано:: | Гость |
Дата: | Четверг, 18 Ноябрь 2021, 23:19 |
Описание
1. Основные понятия и определения. Виды измерений.
2. Методы измерений.
3. Понятие о точности измерений.
4. Основы обеспечения единства измерений
Оглавление
1. Основные понятия и определения. Виды измерений
Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.
Измерения могут быть классифицированы по метрологическому назначению на три категории:
Ненормированные – измерения при ненормированных метрологических характеристиках.
Технические – измерения при помощи рабочих средств измерений.
Метрологические – измерения при помощи эталонов и образцовых средств измерений.
Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.
Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.
Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.
В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.
Можно выделить следующие виды измерений.
1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:
- статические, при которых измеряемая величина остается постоянной во времени;
- динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.
2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.
При прямом измерении искомое значение величины находят непосредственно из опытных данных (например, измерение диаметра штангенциркулем).
При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.
Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).
Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.
3) По условиям, определяющим точность результата измерения, методы делятся на три класса.
Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.
Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.
Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.
4) По способу выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.
При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).
5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.
Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).
Комплексный метод характеризуется измерением суммарного показателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).
2. Методы измерений
Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Можно выделить следующие методы измерений.
По способу получения значения измеряемых величин различают два основных метода измерений.
Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.
Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
Разновидности метода сравнения:
- метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения;
- дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой;
- нулевой метод, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (например, измерение электрического сопротивления по схеме моста с полным его уравновешиванием);
- метод совпадений, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов (например, считывание размера по основной и нониусной шкалам штангенциркуля).
При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.
В зависимости от измерительных средств, используемых в процессе измерения, различают:
- инструментальный метод;
- экспертный метод, который основан на использовании данных нескольких специалистов (например, в квалиметрии, спорте, искусстве, медицине);
- эвристические методы, которые основаны на интуиции. Широко используется способ попарного сопоставления, когда измеряемые величины сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения;
- органолептические методы оценки, которые основаны на использовании органов чувств человека (осязания, обоняния, зрения, слуха, вкуса). Например, оценка шероховатости поверхности по образцу зрительно или на ощупь.
3. Понятие о точности измерений
Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.
Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).
Класс точности – обобщённая метрологическая характеристика средства измерения.
Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:
– относительно измеренного значения (относительная погрешность),
– относительно максимального значения шкалы (приведённая погрешность),
– относительно участка шкалы (приведённая к участку шкалы погрешность).
Рассмотрим эти три варианта.
Вариант 1. Относительная погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.
Вариант 2. Приведённая погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.
Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.
Вариант 3. Приведённая к участку шкалы погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.
Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.
Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.
Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.
Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.
Корректная запись результатов
Запись результатов измерений производится по следующим правилам.
1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.
Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.
2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.
Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.
1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.
2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.
Корректная запись: 10,646 ± 0,013.
Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.
4. Основы обеспечения единства измерений
Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.
Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.
В 1993 г. был принят Закон Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в нашей стране. Он состоит из семи разделов: общие положения; единицы величин, средства и методики выполнения измерений; метрологические службы; государственный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений. В Законе дано следующее определение понятия «единство измерения»:
«Единство измерения – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью».
Обеспечение единства измерений является задачей метрологических служб.
Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.
Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.
Источник