Общая характеристика и классификация
Эмульсии — дисперсные системы с жидкой дисперсионной средой и жидкой (реже газовой) дисперсной фазой. Лекарственные эмульсии представляют собой микрогетерогенные системы. Изготовление эмульсий регламентировано ГФ. В соответствии с ГФ «эмульсии — это однородная по внешнему виду лекарственная форма, состоящая из взаимно нерастворимых тонко диспергированных жидкостей, предназначенная для внутреннего, наружного или инъекционного применения».
Эмульсии классифицируют по исходному материалу, составу, концентрации, типу, применению.
По исходному материалу различают масляные и семенные эмульсии.
По составу эмульсии могут быть простыми (масло-липофиль-ная жидкость, эмульгатор, вода — гидрофильная жидкость) и сложными (эмульсия, раствор, суспензия в различных сочетаниях).
По концентрации эмульсии подразделяют на три группы: разбавленные (дисперсная фаза занимает по объему доли процентов, например, воды ароматные). Они могут быть стабильными без добавления стабилизатора за счет высокой дисперсности и низкой концентрации дисперсной фазы; концентрированные (единицы и десятки процентов) — большинство эмульсий, применяемых в медицинской практике. Для стабилизации концентрированных эмульсий требуется добавление стабилизатора (эмульгатора); высококонцентрированные, или спумоидные (пенообразные). Например, многие мази, кремы (доля дисперсной фазы может достигать 70 — 99 %). В таких эмульсиях капли дисперсной фазы прижаты друг к другу и разделены тонкими эмульсионными пленками.
По типу выделяют: эмульсии первого рода, прямые (масло в воде) — Письмо в ООО Елецкие мониторинговые системы дисперсная фаза (масло или липофильная жидкость) в виде капелек распределена в водной (или гидрофильной) дисперсионной среде. Эмульсии этого типа — более жидкие, по внешнему виду напоминают молоко. Их применяют внутрь, наружно, инъекционно; эмульсии второго рода, обратные, инвертные (вода в масле) — дисперсная фаза (вода илигидрофильная жидкость) в виде капелек распределена в масляной (или липофильной) дисперсионной среде. Эмульсии этого типа — более вязкие, густые. По внешнему виду напоминают мягкое сливочное масло. Их в основном применяют наружно: линименты, кремы; множественные эмульсии, в которых капли дисперсной фазы содержат в своем объеме более мелкие капли дисперсионной среды. По типу множественных эмульсий в настоящее время разрабатывают новое поколение лекарственных препаратов.
По применению различают эмульсии: для наружного применения (питательные и лечебные клизмы, очищающие эмульсии, косметическое молочко и др.); для внутреннего применения (микстуры); для инъекционного введения (эмульсии для парэнтерального питания).
Важная характеристика эмульсий — их дисперсность. В концентрированных эмульсиях средний размер капель обычно составляет от нескольких до десятков микрометров, тогда как разбавленные эмульсии имеют капли размером в доли микрометра и меньше. Размеры капель жидкости в фармацевтических эмульсиях колеблются от 0,1 до 50 мкм.
Лекарственные вещества в лекарственной форме «Эмульсии» назначают в следующих целях:
— замаскировать неприятный вкус или запах (например, масло касторовое, эфирные масла и др.);
— облегчить дозированный прием вязких густых жидкостей (винил ин, масло касторовое и др.);
— смягчить раздражающее действие некоторых лекарственных веществ (хлоралгидрата, бромидов, метилурацила и др.);
— обеспечить всасывание масляной фазы в желудке (эмульсии первого рода — «масло в воде»), ускорить гидролиз диспергированных жиров ферментами желудочно-кишечного тракта;
— ускорить всасывание масел в мелкодисперсном состоянии при парэнтеральном применении.
Эмульсии должны быть однородными, стабильными при хранении; устойчивыми к механическим воздействиям (не расслаиваться при центрифугировании со скоростью 1,5 тыс. об/мин); выдерживать воздействие высоких (до 50 °С) и низких температур; обеспечивать оптимальный фармакологический эффект.
Нарушение устойчивости эмульсий при хранении связано с протеканием в системе процессов седиментации, коагуляции капель, коалесценции (их слияния, потери агрегативной устойчивости) и диффузионного переноса вещества от малых капель к более крупным (переконденсация). Эффективным способом замедления переконденсации эмульсий является введение в состав дисперсной фазы добавок, практически не растворимых в дисперсионной среде.
Под агрегативной устойчивостью эмульсий, так же как в случае растворов защищенных коллоидов и суспензий, понимают способность дисперсной фазы (капелек жидкости или пузырьков газа) как можно дольше сохранять равномерное распределение в дисперсионной среде. При слиянии капелек фазы в сплошной слой эмульсия расслаивается, разделяется на два несмешивающихся слоя и при взбалтывании не восстанавливается (потеря агрегативной и кинетической устойчивости).
Эмульсии расслаиваются под влиянием сильных электролитов, дегидратирующих веществ (этанола, глицерина дистиллированного, сиропа сахарного и т.п.); веществ кислого и щелочного характера; факторов внешней среды; механического воздействия, температуры.
Седиментация в эмульсиях может быть, так же как и в случае суспензий, прямой или обратной (образование «сливок») в зависимости от соотношения плотностей дисперсной фазы и дисперсионной среды. Для предотвращения седиментации проводят дополнительное диспергирование (гомогенизацию) эмульсий или вводят добавки, выравнивающие плотности фаз. Устойчивость к коагуляции и отсутствие коалесценции могут быть достигнуты правильным выбором эмульгатора.
Возможность образования эмульсий, их тип и стабильность определяются поверхностными явлениями на границах раздела фаз и зависят, прежде всего, от наличия в системе ПАВ-эмульгаторов, их концентрации, молекулярного строения, гидрофильно-липофильного баланса. Учитывая отсутствие сродства дисперсной фазы к дисперсионной среде, получить устойчивые концентрированные, особенно высококонцентрированные эмульсии только за счет уменьшения размера частиц (как в случае суспензий гидрофильных веществ, имеющих сродство к дисперсионной среде) без добавления стабилизаторов не удается.
По мере уменьшения частиц дисперсной фазы увеличивается свободная межфазная энергия (Гиббса), которая (при отсутствии сродства частиц дисперсной фазы к дисперсионной среде) стремится к уменьшению путем слияния частиц (уменьшения удельной поверхности дисперсной фазы). Стабилизировать систему (уменьшить энергию Гиббса (∆G ∆Sσ), сохранив высокую дисперсность частиц дисперсной фазы) удается снижением величины межфазного натяжения а. Эту роль выполняют поверхностно-активные вещества (ПАВ), молекулы которых адсорбируются на границе раздела фаз: «жидкость—жидкость»; «жидкость—газ», образуя пленку из молекул эмульгатора, прочно обволакивающую частицы дисперсной фазы (капельки жидкости).
Молекулы ПАВ обладают дифильными свойствами, т.е. имеют в молекуле гидрофильные (обладающие сродством к воде) и гидрофобные (обладающие сродством к маслу) группы, которые определенным образом сбалансированы. Это свойство молекулы эмульгатора характеризуется значением гидрофильно-липофильного баланса.
Молекулы эмульгатора располагаются строго определенным образом в зависимости от характера групп его молекул. Гидрофильные группы эмульгатора всегда ориентированы к водной фазе и погружены в нее. Неполярные участки молекул, например, углеводородные цепи, всегда ориентированы к масляной фазе.
Стабилизаторами прямых эмульсий являются водорастворимые ПАВ с высокими значениями гидрофильно-липофильного баланса (более 8): анионные мыла (мыла щелочных металлов, натриевые и триэтаноламиновые соли алкилсульфокислот и алкилфос-форных кислот), неионогенные (твины, этоксилаты спиртов и алкилфенолов), катионные (четвертичные аммониевые соли, алкилимидазолины), высокомолекулярные ПАВ как природные (лецитины, полисахариды, липопротеины, белки), так и синтетические (поливиниловый спирт, полиакрилаты и др.). Для стабилизации обратных эмульсий используют мыла переходных металлов, моноалканоламиды, неионогенные ПАВ с низким гидрофильно-липофильным балансом, например спан-80, этиленоксилаты высших спиртов и кислот.
При взаимодействии прямых эмульсий, стабилизированных мылами, может происходить обращение фаз — самопроизвольное обращение прямой эмульсии в обратную. При использовании неионогенных эмульгаторов обращение фаз может происходить при изменении температуры.
Ассортимент эмульгаторов в настоящее время очень велик, но в аптечную практику они внедряются медленно. Для стабилизации эмульсий могут быть использованы эмульгаторы: Т-2 (2—6 %), твин-80 (0,5-5%), глицерам (0,1%), Na-КМЦ (0,5-2%); 5% гель МЦ, взятый в количестве 20 % массы эмульсии; гели полисахаридов микробного происхождения (родэксман, аубазидан, ксантан) в концентрациях 0,25— 1 % и др.
Желатоза (Gelatosa) относится к группе амфотерных эмульгаторов, представляет собой природный продукт неполного гидролиза желатина. Порошок трудно стандартизуется, гигроскопичен и может быть контаминирован микрофлорой. Поэтому эмульсии, стабилизированные желатозой, имеют ограниченный срок хранения. Иногда желатозу заменяют сухим молоком (Lac vaccinum exiccatum exoleatum), яичным порошком, которые берут в количестве около 50 % массы масла, яичным желтком (Vitellum ovi). Один желток массой приблизительно 18 г способен за счет содержания в нем лецитина обеспечить эмульгирование 10—15 г жирного масла и до 30 г масла касторового.
В случае отсутствия в аптеке желатозы эмульсии внутреннего применения могут быть стабилизированы 10% гелем крахмала (Solutio amyli, Mucilago amyli), который готовят из крахмала, взятого в количестве 50 % массы масла или масляного раствора. Технология изготовления 10 % раствора крахмала описана ранее (см. гл. 15). Масса раствора может быть увеличена для стабилизации нерезко гидрофобного вещества, выписанного в составе эмульсии, но вводимого в эмульсию по типу суспензии.
В семенных эмульсиях стабилизатором служат природные белки. Задача технолога при изготовлении агрегативно и седиментационно устойчивых эмульсий состоит в подборе эффективного эмульгатора, специфичного для данного типа эмульсии (подробнее о свойствах ПАВ см. гл. 5).
Учитывая неустойчивость эмульсий, в аптеке их изготавливают, как правило, ex tempore.
Источник
Лекция №14.
План лекции:
ЭМУЛЬСИИ
Эмульсии — особый вид дисперсных систем, дисперсная фаза и дисперсионная среда являются взаимонерастворимыми жидкостями, это системы Ж/Ж.
Свойства эмульсий
В зависимости от состава дисперсной фазы и дисперсионной среды могут быть прямые и обратные эмульсии.
Прямые эмульсии типа М/В — дисперсия масла в воде.
Обратные эмульсии типа В/М — дисперсия воды в масле. Пример прямой эмульсии — молоко, пример обратной эмульсии — маргарин, нефть.
В зависимости от концентрации раздробленной фазы эмульсии могут быть разбавленными (0,1%), концентрированными (0,1% — 75%), высококонцентрированными (свыше 75 %).
В разбавленных эмульсиях концентрация дисперсной фазы невелика, поэтому их свойства не отличаются от свойств дисперсионной среды.
Стремление поверхностной энергии к минимуму, вследствие подвижности жидкой границы раздела, приводит к самопроизвольному снижению поверхности раздела фаз. По этой причине капли разбавленных и концентрированных эмульсий приобретают шарообразную форму.
При концентрации дисперсной фазы свыше 75% наблюдается деформация жидкости, обрамляющей капли дисперсной фазы, ее сферичность нарушается, а эмульсия приобретает новые свойства. Подобные эмульсии образуют структуру — маргарин.
Устойчивость эмульсий
Эмульсии могут быть лиофильными и лиофобные. Лиофильные — термодинамически устойчивы и образуются самопроизвольно путем диспергирования массы жидкости до капель.
Большинство эмульсий относится к лиофобным системам — они термодинамически неустойчивы, не могут образовываться самопроизвольно, существовать длительное время, нуждаются в стабилизации. Разрушение и потеря агрегативной устойчивости происходит в несколько стадий. Первая — контакт по крайней мере двух капель. Вторая — образование агрегатов.
Устойчивость эмульсий зависит от ряда причин : поверхностного натяжения, свойств и структуры граничных слоев.
Повышения устойчивости лиофобных эмульсий достигают введением веществ эмульгаторов, способных стабилизировать эмульсии.
Эмульгаторы могут быть гидрофобные и гидрофильные.
Гидрофильные эмульгаторы — ПАВ. Стабилизируют прямые эмульсии. Полярные радикалы образующегося на границе раздела фаз адсорбционного слоя ПАВ находятся на наружной стороне капель масла, препятствуя их сближению (рис. 14.1, а)
SHAPE \* MERGEFORMAT
Рис.14.1. Адсорбция молекул ПАВ в прямых (а) и обратных (б) эмульсиях.
Эти же вещества в эмульсиях обратного типа адсорбируются на внутренней поверхности капель воды (14.1, б), образующийся адсорбционный слой не является препятствием для слипания капель. Поэтому стабилизацию обратных эмульсий нужно производить с помощью ПАВ, которые лучше растворяются в масле, чем в воде.
Ориентация адсорбционного слоя ПАВ происходит в соответствии с правилом уравнивания полярности Ребиндера:
полярная группа молекул ПАВ обращена к полярной жидкости, а неполярный радикал — к неполярной.
Соотношением между гидрофильными и гидрофобными частями молекул ПАВ определяется:
1.Эффективность эмульгатора. Гидрофильные свойства определяются взаимодействием полярных групп молекул ПАВ с водой. Гидрофобный радикал обуславливает взаимодействие между неполярной цепью ПАВ и маслом. Лиофильное взаимодействие ПАВ и масла будет гидрофобным по отношению к воде.
2.Поверхностная активность. Для короткоцепочечных ПАВ преобладает гидрофильное взаимодействие, в результате которого молекулы втягиваются в воду. Длинноцепочечные молекулы ПАВ — гидрофобное взаимодействие.
Уравновешивание гидрофильного и лиофильного взаимодействий называется гидрофильно-липофильным балансом (ГЛБ). То есть определенное оптимальное соотношение действия воды и масла на молекулы ПАВ определяет условия образования адсорбционного слоя на границе раздела двух жидкостей.
ГЛБ — эмпирическая безразмерная величина:
ГЛБ = ( b + y n )/а (14.1)
где n — число групп СН2 в углеводородном радикале, y — свободная энергия взаимодействия в расчете на одну СН2 группу, b — безразмерный параметр, зависящий от природы ПАВ, а — сродство полярной группы молекулы ПАВ к воде.
Действие адсорбционных слоев ПАВ, экранирующих границу раздела фаз, зависит от свойств ПАВ и жидкостей, образующих эмульсию. Прочные адсорбционные слои образуют белки, углеводы, имеющие слабую поверхностную активность.
Роль эмульгаторов могут выполнять порошки. Действие порошков эмульгаторов обеспечивается особым положением частиц порошка на границе раздела двух жидких фаз.
Получение и разрушение эмульсий
Эмульсии могут образовываться самопроизвольно или получаться искусственно в результате диспергирования или гомогенизации.
Самопроизвольное эмульгирование характерно для лиофильных систем и определяется минимальным значением межфазового поверхностного натяжения.
Механическое диспергирование жидкостей достигается перемешиванием, встряхиванием или вибрацией. Эффективность повышается в присутствии эмульгаторов.
Для получения и стабилизации эмульсий используют гомогенизацию — продавливание жидкостей через отверстия.
Разрушение эмульсий происходит самопроизвольно или под действием деэмульгаторов. Самопроизвольное разрушение характерно для лиофобных эмульсий. Деэмульгирование происходит в результате фазового перехода дисперсионной среды или дисперсной фазы. Например, при нагревании капли дисперсной фазы могут испариться и эмульсия перейдет в пену.
Способ разрушения эмульсий — обращение фаз, то есть, например, превращение прямой эмульсии в обратную. Обращение фаз осуществляется при определенных условиях: наличие высококонцентрированных эмульсий, механическое воздействие, присутствие эмульгаторов.
Применение эмульсий
1.Производство продуктов питания.
2.Производство фармацевтических препаратов.
3.Строительство (битумные эмульсии)
4.Синтез различных веществ.
5.Получение пористых органических сорбентов, мембран, покрытий.
Свойства и особенности пен
Пены — дисперсные системы типа Г/Ж, дисперсная фаза — газ или пар, дисперсионная среда — жидкость. Пены — высококонцентрированные дисперсные системы. Разбавленные системы типа Г/Ж — газовые эмульсии. В разбавленных системах происходит обратная седиментация — всплывание пузырьков газа.
В отличие от других дисперсных систем, которые характеризуются концентрацией дисперсной фазы, пены характеризуются содержанием дисперсной фазы. Так как масса и объем газовой дисперсной фазы непостоянны и быстро меняются, то общее объемное содержание дисперсной фазы характеризуется кратностью пены b , которая показывает, во сколько раз объем пены V п превышает объем жидкости V ж, необходимой для ее формирования:
где V п, V г, V ж — объемы пены, газовой дисперсной фазы, жидкой дисперсионной среды.
Относительная доля воздуха в пенах:
Классификация пен
полусухие 10 b 100.
С увеличением кратности пены растет диаметр пузырьков.
Межфазовое поверхностное натяжение пен определяется свойствами жидкости и газовой среды. Если эти свойства не изменяются, то поверхностное натяжение будет величиной постоянной. При уменьшении энергии Гиббса начинается самопроизвольное разрушение пен.
В пене происходит контакт пузырьков, разделенных слоем жидкости. При осуществлении контакта четырех пузырьков одного размера возникает неустойчивое равновесие, которое нарушается и переходит в устойчивое равновесие трех пузырьков.
Пленки жидкости между пузырьками, образуют треугольники Плато (рис.14.2)
Рис.14.2.Треугольник Плато:1 — пленки жидкости, 2 — канал.
В каждом ребре многогранника сходятся три жидкие пленки, которые являются стенками пузырьков. Эти пленки образуют между собой углы, близкие к 120 0 . В местах стыков пленок образуются утолщения — каналы. Четыре канала сходятся в одной точке, образуя узлы.
Разрушению пены способствует укрупнение пузырьков пены. Этот процесс происходит в результате диффузии газов из мелких пор в более крупные и за счет прорыва слоя жидкости между пузырьками.
Коллоидно-химические и физико-химические свойства пен
1.Электроосмос и потенциал течения.
2.Поглощение и рассеяние света.
3.Капиллярное давление внутри пузырьков.
Устойчивость и получение пен
Пены — термодинамические неустойчивые лиофобные дисперсные системы. Избыточная поверхностная энергия вызывает процессы, которые ведут к увеличению размеров пузырьков, уменьшению дисперсности пены и ее разрушению и определяют агрегативную неустойчивость пен.
Основной параметр, характеризующий агрегативную устойчивость пен, является скорость уменьшения в единице объема пены удельной поверхности или увеличение размера пузырьков.
На практике оценку агрегативной и седиментационной устойчивости пен проводят при помощи коэффициента устойчивости Ку:
V п — первоначальный объем пены, t р — время разрушения пены.
Коэффициент устойчивости определяют по времени жизни столбика пены высотой 3- 5 см .
Пенам придают устойчивость ПАВ.
Для получения пен и для придания им устойчивости применяют пенообразователи. Два типа пенообразователей:
1.Дают малоустойчивые пены — спирты, ПАВ, не обладающие моющим действием.
2.Мыла и синтетические ПАВ.
Факторы, определяющие устойчивость пен :
На практике иногда нужно исключить пенообразование. Для разрушения образующейся пены применяют механические, физические и химические способы.
Механические — струя воздуха. Физические — термическое воздействие. Химические — применение веществ-пеногасителей (жиры, масла).
АЭРОЗОЛИ
Аэрозоли — дисперсные системы, в которых частицы дисперсной фазы находятся во взвешенном состоянии. Дисперсионная среда — газ, дисперсная фазы — твердая.(Т/Г).
Источник