Классификация бактерий по способу получения энергии схема

Бактерии

Люди — редкое исключение в мире бактерий.

Бактерии (греч. bakterion — палочка) — простые одноклеточные микроскопические организмы, принадлежащие к прокариотам. В пищевых цепях они играют важнейшую роль редуцентов: разлагают органические вещества мертвых животных и растений.

Бактерии обладают исключительной устойчивостью: их можно обнаружить даже на стенках ядерного реактора. Такая способность связана с их быстрым размножением — при благоприятных условиях бактерии делятся каждые 20 минут. При изменении условий внешней среды (за счет мутаций) выживают и размножаются те формы, которые устойчивы к действию того или иного фактора (к примеру, радиации).

Строение бактерий

Бактерии имеют клеточную стенку, состоящую из муреина (пептидогликана) и выполняющую защитную функцию. У бактерий (прокариот, доядерных) отсутствуют мембранные органоиды. В их клетке можно найти только немембранные: рибосомы, жгутики, пили. Пили — поверхностные структуры, которые служат для прикрепления бактерии к субстрату.

Наследственный материал находится прямо в цитоплазме (не в ядре, как у эукариот) в виде нуклеоида. Нуклеоид (лат. nucleus — ядро + греч. eidos вид) — одна сложная кольцевидная молекула ДНК, не ограниченная мембранами от остальной части клетки.

Долгое время выделяли «особый органоид» бактерий — мезосомы, считали, что они могут участвовать в некоторых клеточных процессах.

Спешу сообщить, что на данный момент установлено однозначно: мезосомы это складки цитоплазматический мембраны, образующиеся только лишь при подготовке бактерий к электронной микроскопии (это артефакты, в живой бактерии их нет).

При наступлении неблагоприятных для жизни условий бактерии образуют защитную оболочку — спору. При образовании споры клетка частично теряет воду, уменьшаясь при этом в объеме. В таком состоянии бактерии могут сохраняться тысячи лет!

В состоянии споры бактерии очень устойчивы к изменениям температуры, механическим и химическим факторам. При изменении условий среды на благоприятные, бактерии покидают спору и приступают к размножению.

Энергетический обмен бактерий

Бактерии получают энергию за счет окисления веществ. Существуют аэробные бактерии, живущие в воздушной среде, и анаэробные бактерии, которые могут жить только в условиях отсутствия кислорода.

К аэробным бактериям относят многочисленных редуцентов, которые разлагают органические вещества мертвых растений и животных. Анаэробные бактерии составляют микрофлору нашего кишечника — бескислородную среду обитания.

Получают энергию бактерии путем хемо- или фотосинтеза. Среди хемосинтезирующих бактерий можно встретить нитрифицирующие бактерии, железобактерии, серобактерии.

Важно заметить, что клубеньковые бактерии (азотфиксирующие) не осуществляют хемосинтез: клубеньковые бактерии относятся к гетеротрофам.

Среди фотосинтезирующих бактерий особое место принадлежит цианобактериями (сине-зеленым водорослям). Благодаря им сотни миллионов лет назад возник кислород, а с ним и озоновый слой: появилась жизнь на поверхность земли и аэробный тип дыхания (поглощение кислорода), которым мы сейчас с вами пользуемся 🙂

Что касается бактерий гетеротрофов, то их способ питания основан на разложении останков животных и растений — сапротрофы (редуценты), либо же они питаются органами и тканями животных и растений — паразиты.

Биотехнология

Бактерии широко применяются в направлении биотехнологии — генной инженерии. Их используют для получения различных химических веществ (белков).

В ДНК бактерии вставляют нужный ген (к примеру, ген, кодирующий белковый гормон — инсулин), бактерия принимает новый участок гена за свой собственный, в результате чего начинает синтезировать белок с данного участка. На рибосомах подобных бактерий синтезируется инсулин, который человек собирает, обрабатывает и использует как лекарство.

Бактерии используются для получения антибиотиков (тетрациклина, стрептомицина, грамицидина), широко применяемых в медицине. Бактерии также применяют в пищевой промышленности, где их используют для получения молочнокислых продуктов, алкогольных напитков.

Классификация бактерий по форме

При микроскопии становятся заметны явные отличия форм бактерий.

По форме бактериальные клетки подразделяются на:

  • Стафилококки — их скопления похожи на виноградные грозди
  • Диплококки — округлой формы, расположенные попарно
  • Стрептококки — объединяются в цепочки, напоминающие нити жемчуга
  • Палочки
  • Вибрионы — изогнутые в виде запятой
  • Спириллы — спирально извитые палочки
  • Спирохеты — сильно извитые (до 10-15 витков) палочки

Размножение бактерий

Бактерии, как прокариоты (доядерные организмы), не могут делиться митозом, так как основное условие митоза — наличие ядра. Бактерии делятся бинарным делением клетки.

В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Деление в среднем происходит раз в 20 минут, популяция бактерий растет в геометрической прогрессии.

При размножении в лабораторных условиях бактерии образуют колонии. Колонии — видимые невооруженным глазом скопления клеток, образуемые в процессе роста и размножения микроорганизмов на питательном субстрате. Колонии выращиваются в чашках Петри.

Читайте также:  Пластиковые панели для стен способы крепления

Бактериальные инфекции

Многие патогенные бактерии приводят к развитию тяжелых заболеваний у человека. На настоящий момент при бактериальных инфекциях применяются антибиотики, дающие хороший эффект.

От некоторых болезней: дифтерия, коклюш и т.д. разработаны вакцины, дающие стойкий пожизненный иммунитет. После вакцинации образуются антитела к возбудителю, вследствие чего организм становится защищен от подобных инфекций: при встрече с возбудителем человек не заболевает, или переносит болезнь в легкой форме.

К бактериальным инфекциям относятся: чума, дифтерия, туберкулез, коклюш, гонорея, сифилис, тиф, столбняк, брюшной тиф, сальмонеллез, дизентерия, холера. Ниже вы можете видеть возбудителей данных заболеваний и место их локализации в организме.

Для борьбы с бактериями, вирусами и грибами в медицинских учреждениях (уже часто и в домашних условиях) используется кварцевание. Кварцевание — процесс обеззараживания помещения, суть которого в лампе, испускающей ультрафиолетовое излучение, губительное для микроорганизмов.

При проведении медицинских процедур локального кварцевания (облучения УФ отдельных участков) тела следует надевать защитные очки для избежания ожога сетчатки глаза. При кварцевании помещений следует покинуть их по той же причине.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Классификация бактерий по типу питания. Источники углерода, азота, макро- и микроэлементов, ростовых факторов для микробов.

Процесс, в ходе которого бактериальная клетка получает из ок­ружающей среды компоненты, необходимые для построения ее биополимеров (органоидов), называется питанием.

По химическому составу и характеру биополимеров (белки, по­лисахариды, нуклеиновые кислоты, липиды) прокариотические клетки не отличаются от эукариотических. Бактериальные клетки не имеют специальных органов питания, т. е. являются голофитными.

Основными химическими компонентами бактериальной клетки являются органогены — углерод, азот, водород, кислород.

Источники углеродов: в настоящее время все бактерии, в зависимости от способности усваивать различные формы углеродосодержащих соединений, подразделяются по типу питания на две группы:

Автотрофы (autos — сам, trophe — питание) способны строить сложные соединения углерода из СО2 и Н2О. К ним относятся нитрифицирующие бактерии, железобактерии и др. Для роста автотрофных бактерий потреб­ности в питательных веществах довольно просты: вода, двуокись угле­рода и соответствующие неорганические соли.

Гетеротрофы(heteros — другой) нуждаются в готовых органических соединениях. Они подразделяются на сапрофиты (sapros — гнилой, phyton -растение) и паразиты (parasitos — нахлебник). Гетеротрофные бактерии получают энергию в результате окисления восстановленных углеродных (органических) соединений. Некоторые из них, такие как E.coli,способны к росту на простой среде, содержащей только глюкозу и неорганические соли. Другие, например молочнокислые бактерии, — растут на сложных средах, содержащих в качестве добавок ряд органических соединений (витамины, аминокислоты и др.), которые клетки не в состоянии синтезиро­вать самостоятельно. Такие соединения называются факторами роста.

Сапрофитыиспользуют готовые органические соединения, но они независимы от других организмов. К ним относят микробов, вызывающих процессы гниения и брожения.

Паразитыэто микробы, зависимые в получении питательных веществ от макроорганизма. Различают облигатные паразиты и факультативные. Облигатные паразиты способны размножаться только в живой клетке, они не растут на питательньгх средах. К ним относятся риккетсии, хламидии и вирусы.

Источники азота.Для синтеза азотсодержащих соединений (аминокислот, пуринов, пиримидинов, витаминов) микробам нужен азот. Одни способны усваивать молекулярный азот из воздуха или неорганический азот из солей аммония, нитратов или нитритов, другие используют органические азотсодержащие соединения.

1. азотфиксирующие микроорганизмы — способны усваивать моле­кулярный азот атмосферы;

2. микроорганизмы, ассимилирующие неорганический азот из солей аммония — аммонифицирующие;

3. микроорганизмы, ассимилирующие неорганический азот из нитратов — нитратредуцирующие;

4. микроорганизмы, ассимилирующие неорганический азот из нитритов — нитритредуцирующие.

Однако большинство патогенных для человека микроорганиз­мов способны ассимилировать только азот органических соеди­нений. Микроорганизмы, способные синтезировать все необходимые им органические соединения из глюкозы и солей аммония (углеводы, аминокислоты и др.) и не нуждающиеся в факторах роста называются прототрофами.

Микроорганизмы, неспособные синтезировать какое-либо из необ­ходимых соединений и ассимилирующие их в готовом виде из ок­ружающей среды или организма хозяина (человека, животного), называются ауксотрофами по этому соединению.Это микроорганизмы, которые нуждаются в готовых факторах роста (аминокислотах, витаминах, пуриновых и пиримидиновых основаниях). Чаще всего ими являются патогенные или условно-патогенные для чело­века микроорганизмы.

Читайте также:  2 задачи для 4 класса алгебраическим способом

Кроме углерода, азота, водорода и кислорода, для биосинтетических реакций микробам необходимы соединения, содержащие серу (она входит в состав коэнзимов), фосфор (фосфор входит в состав нуклеиновых кислот, АТФ, флавинов), минеральные соли: К, Mg, Са, Сu, Мо, необходимые для действия ферментов, факторы роста.

Следует учитывать и то, что в природе встречаются бактерии, которые способны размножаться в местах с низким пищевым потоком углерода — до 0,1 мг/л в день, они получили название олиготрорфных, противоположную группу для них составляют бактерии копнотрофные, способные к росту на богатых пи­щевых субстратах.

Механизмы питания бактерий

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует два типа переноса веществ в бак­териальную клетку: пассивный и активный.

При пассивном переносе вещество прони­кает в клетку только по градиенту концентра­ции. Затрат энергии при этом не происходит. Различают две разновидности пассивного пе­реноса: простую диффузию и облегченную диффузию (табл. 14).

Таблица 14. Виды транспорта в бактериальной клетке

Вид транспорта Направление транспорта Механизм транспорта
Без затрат энергии Простая диффузия По градиенту концентрации Диффузия через цитоплазматическую мембрану
Облегченная диффузия Диффузия через цитоплазматическую мембрану с участием пермеаз
С затратой энергии Активный транспорт Против градиента концентрации Взаимодействие со специфическим связывающим белком, а затем с транспортным белком, который осуществляет перенос молекулы внутрь клетки
Транслокация радикалов Независимо от градиента концентрации* Фосфорилирование субстрата, что делает невозможным его выход из клетки

* концентрация неизмененного питательного вещества внутри клетки может быть одинаковой с его внеклеточным содержанием, но концентрация химически измененного питательного соединения внутри клетки может значительно превышать концентрацию неизмененного соединения в среде.

Простая диффузия неспецифи­ческое проникновение по градиенту концентрации веществ в клетку. Осуществляется до тех пор, пока концентрация вещества не будет равной по обе стороны мембраны (внутри и вне клетки). Скорость переноса незначительна, энергонезатратная, не имеющая субстратной специфичности. Только мелкие гидрофобные молекулы способны проходить через гидрофобный билипидный слой мембраны, так в клетку поступает вода и растворенные в ней низкомолекулярные вещества.

Облегченная диффузия проте­кает по градиенту концентрации при обязательном участии специфических белков — пермеаз, локализованных в мембране, энергонезатратная. На внешней стороне мембраны они распознают и связывают молекулу субстрата и обеспечивают ее перенос через мембрану. На внутренней поверхности мембраны комплекс пермеаза-субстрат диссоциирует, и молекула субстрата включается в общий метаболизм клетки. Скорость этого способа переноса зависит от концентра­ции вещества в наружном слое.

При активном переносе вещество про­никает в клетку против градиента концен­трации при помощи белка-переносчика — пермеазы. При этом происходит затрата энергии, так как этот процесс происходит тогда, концентрация вещества в микробной клетке выше чем в питательной среде. Имеется два типа активного транс­порта.

Активный транспорт — против градиента концентрации, субстратспецифичен, энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде. Транспортируемое вещество взаимодействует со специфическим связывающим белком (специальные связывающие белки в комплексе с пермеазами), локализованном в периплазматическом пространстве, затем связывающий белок взаимодействует с транспортным белком, находящимся в цитоплазматической мембране, который осуществляет транспорт молекулы внутрь клетки. При этом типе активного транспортанебольшие молекулы (аминокислоты, некоторые сахара) «накачиваются» в клетку и создают концентрацию, которая может в 100-1000 раз превышать концентрацию этого вещества снаружи клетки.

Транслокация радикалов(перенос групп) — против градиента концентрации, с помощью фосфотрансферазной системы, составной частью которой является белок-переносчик, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде. Этот ме­ханизм обеспечивает включение в клетку некоторых сахаров (например, глю­козы, фруктозы), которые в процессе пе­реноса фосфорилируются, т. е. химически модифицируются. Фосфорилированный белок связывает свободный сахар на наружной поверхности мембраны и транспортирует его в цитоплаз­му, где сахар освобождается в виде фосфата. Поступив в клетку, органический источник углерода и энергии вступает в цепь биохимичес­ких реакций, в результате которых образуются АТФ и ингредиенты для биосинтетических про­цессов. Биосинтетические (конструктивные) и энергетические процессы протекают в клетке одновременно.

5. Классификация микроорганизмов в зависимости от источника энергии

В зависимости от источника энергии микроорганизмы делят на:

Читайте также:  Способы замещения должностей прокурорской службы

фототрофы (энергию получают за счет фотосинтеза — например, цианобактерии)

хемотрофы (энергия добывается за счет химических, окислительно- восстановительных реакций).

Если при этом донорами электронов являются неорганические соединения, то это хемолитотрофы, если органические — хемоорганотрофы (табл. 15). К последним принадлежит значительное боль­шинство бактерий, в том числе патогенные для человека виды.

Таблица 15. Классификация бактерий по типам питания и источникам энергии

Группа Бактерий Источник подгруппа
питание энергии
Автотрофы С02 N, S, Р, Н2О, различные неорганичес­кие соединения Фотосинтез автофотолитотрофы (цианобактерии)
Хемосинтез автохемолитотрофы (нитрифицирующие бактерии, азотфиксирующие бактерии)
Гетеротрофы Органические соединения Фотосинтез гетерофотоорганотрофы (некоторые виды цианобактрий)
Хемосинтез гетерохемоорганотрофы (бактерии — возбудители инфекционных заболеваний)

У прокариотов возможны три пути получения энергии, которые различаются по выходу энергии: фотосинтез, дыхание и брожение.

Фотосинтез(фотосинтетическое фосфорилирование). Основные участники фотосинтетического фосфорилирования:энергия фотонов, хлорофилл или его аналоги — пигменты, СО2 . Вся энергия на земле — это энергия солнечного света. Эту энергию способна усваивать очень небольшая группа микробов, содержащих пигменты, подобные хлорофиллу. Они составляют группу цианобактерий (старое название — сине-зелёные водоросли). Однако большинство бактерий получают энергию путем химических реакций. Они называются скотобактерии.

Энергия в бактериальной клетке накап­ливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, — это реакции окисления-восстановления, сопря­женные с реакциями фосфорилирования. Окисленный в этих реакциях углерод вы­деляется клеткой ввиде СO2. Для удаления отщепившегося в этих реакциях водорода, который находится в форме восстановлен­ного НАД, различные бактерии используют различные возможности в зависимости от конечного акцептора водорода (или элект­ронов, что является эквивалентным поня­тием). В зависимости от способа получения энергии у бактерий имеется несколько типов метаболизма: окислительный, или дыхание; бродильный, или ферментативный; смешан­ный. Тип метаболизма определяет не только реакции, в результате которых образуется АТФ, он также определяет конечные продук­ты этих реакций, которые используются при идентификации бактерий, а также условия культивирования бактерий.

Дыхание(окислительное фосфорилирование). Представляет собой процесс взаимодействие субстрата со свободным кислородом и ферментами дыхательной цепи.Дыхание или биологическое окислениесовокупность биохимических процессов, сопровождающихся образованием энергии, необходимой для жизнеобеспечения клетки.

Дыхание процесс получения энергии в реакциях окисления-восстановления, со­пряженных с реакциями окислительного фосфорилирования, при котором донора­ми электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором — только неорганические соединения.

Одним из основных путей реализации энергии, содержащейся в фосфорных связях органических соединений, является способность передавать фосфатный остаток другим соединениям. Это называется фосфорилированием.Фосфорилирование делает соединение нестабильным. Оно распадается с выделением энергии. Поэтому АТФ называют энергетической валютой клетки.

Окислительный метаболизм.Бактерии, об­ладающие окислительным метаболизмом, энергию получают путем дыхания. У бактерий, обладающих окислительным ме­таболизмом, акцептором электронов (или во­дорода (Н + ) является молекулярный кислород.

Суть окисления заключается в присоединении кислорода или в отнятии водорода от субстрата, в результате чего происходит расщепление вещества и разрушение химических связей. Энергия этих связей выделяется в окружающую среду и почти на 70% улавливается клеткой в виде биологической энергии, т.е. в виде образования высокоэнергетических соединений, главным из которых является АТФ и УДФ.

Кроме АТФ (аденозинтрифосфат) у прокариот энергия накапливается в УДФ (уридиндифосфат), ферментных комплексах НАДФ (никотинаденин-динуклеотидфосфат) и ФАДФ (флавинаденин-динуклеотидфосфат), пирофосфате и волютине (орто- и метафосфаты).

Все процессы дыхания происходят на ЦПМ и начинаются с гликолиза, в результате которого образуется пировиноградная кислота или пируват (ПВК). Пировиноградная кислота является исходным материалом для дальнейших катаболических реакций.

Таким образом, дыхание — это биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О2), при анаэробном — связанный кислород (-NO3 , =SO4, =SO3).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Оцените статью
Разные способы