Класс объект его свойства способы описания

Классы. Общая характеристика. Защищённые классы. Виды отношений между классами. Ассоциации классов

Раздел 1. Теоретические основы объектно-ориентированного программирования

Тема 1.2 Объекты, сообщения, классы.

1. Объект, его свойства. Способы описания. Инкапсуляция. Полиморфизм. Наследование. Инициализация и разрушение объекта.

2. Классы. Общая характеристика. Защищённые классы. Виды отношений между классами. Ассоциации классов.

3. Событие. Структура программы, управляемой событиями. Сообщение. Цикл обработки сообщений.

Объект, его свойства. Способы описания. Инкапсуляция. Полиморфизм. Наследование. Инициализация и разрушение объекта.

Центральным элементом абстракции объектно-ориентированной методологии является объект.

Объект: Программные объекты моделируют объекты реального или воображаемого мира. Как модель, программный объект представляет собой некоторую абстракцию объекта реального, что предполагает выделение существенных свойств последнего и игнорирование тех, что безразличны с насущной, “сиюминутной”, точки зрения.

Как нечто, как единичность, объект (реальный или программный) отличен от всего остального. Он обладает индивидуальностью: объект, как бы его ни переименовывать и как бы ни менялось его состояние, остается той же самой единичной сущностью с момента создания и до своего уничтожения.

Состояние объекта: Объект, прежде всего, характеризуется своим состоянием. Состояние программного объекта полностью определяется некоторым набором характеристик и их текущими значениями. Эти характеристики называют полями. Но не все моменты состояния объекта должны быть непосредственно видимы извне. На самом деле состояние может быть вообще скрыто от внешнего взгляда. Оно инкапсулировано в объекте.

Поведение объекта: Поведение — это то, как объект взаимодействует с окружением (другими объектами). Объект может подвергаться воздействию окружения или сам воздействовать на него. Объект может рассматриваться как аналог предмета, а поведение — как реакция на манипуляции с ним или действия, инициированные самим объектом. Для каждого объекта существует определенный набор возможных действий над ним.

Действия в отношении к объектам иногда называют передачей сообщений между ними. В языках, подобных Object Pascal, операции над объектами называют обычно методами.

Отношения между объектами:

Можно выделить два типа отношений: связь и агрегацию.

Связь является разновидностью следующего взаимодействий — один объект может воздействовать на другой, являющийся автономной сущностью. Тут существует отношение подчинения — “А использует В”. Один объект является активным, другой — пассивным. В системе один и тот же объект может выступать как в активной, так и в пассивной роли по отношению к различным объектам.

Другой тип отношений — агрегация, когда один объект является составной частью, т. е. элементом другого — “А содержит В”. Агрегация может означать физическое вхождение одного объекта в другой.

Классы. Общая характеристика. Защищённые классы. Виды отношений между классами. Ассоциации классов.

Класс — это множество объектов, имеющих одинаковую структуру. В то время как объект представляет собой конкретную сущность, класс является абстракцией сущности объекта. Конкретный объект является представителем, или экземпляром класса. Класс представляет собой объявленный программистом составной тип данных, имеющий в составе:

Поля данных:Параметры объекта, задающие его состояние. Физически поля представляют собой значения (переменные, константы), объявленные как принадлежащие классу.

Методы:Процедуры и функции, связанные с классом. Они определяют действия, которые можно выполнять над объектом такого типа, и которые сам объект может выполнять.

Другими словами, структура характеристик объекта и все потенциальные отношения между объектами заложены в классе. Однако классы могут находиться еще и в специфических отношениях между собой:

Фундаментальное отношение между классами — это наследование. Один класс может наследовать другому. Говорят, что один класс является базовым, а другой (который наследует первому) — производным. Еще их называют соответственно классомпредком и классомпотомком. Наследование может быть прямым, когда один класс является непосредственным предком (потомком) другого, или косвенным, когда имеют место промежуточные наследования.

Производный класс наследует всю структуру характеристик и поведение базового, однако может дополнять или модифицировать их. Если класс В является производным по отношению к А, то с логической точки зрения “В есть А”. Например, понятие, или класс, “автомобиль” (В) является производным по отношению к понятию “средство передвижения” (А).

Наследование может быть простым, когда производный класс имеет всего одного непосредственного предка, и сложным, если в наследовании участвуют несколько базовых классов.

Полиморфизм, наряду с наследованием, является фундаментальной концепцией объектной модели программирования. Суть полиморфизма в том, что с объектами различных классов, имеющих один и тот же базовый класс, можно при определенных условиях обращаться, как с объектами базового класса; однако объект, являющийся объектом базового класса, будет вести себя по-разному в зависимости от того, что он такое на самом деле, т. е. представитель какого из производных классов.

Чтобы абстрагировать объект, он должен быть сравнительно “слабо связан” с окружающим миром. Он должен обладать сравнительно небольшим набором существенных свойств, характеризующих его отношения с другими объектами. С другой стороны, выделение класса как некоторого понятия, охватывающего целый ряд различных объектов, также является моментом абстракции.

Поэтому абстрагирование, как таковое, имеет два аспекта: выделение общих и в тоже время существенных свойств, описывающих поведение ряда схожих предметов.

С абстракцией неразрывно связан принцип инкапсуляции. Инкапсуляция — это сокрытие второстепенных деталей объекта. Для этого нужно выделить сначала существенные его свойства. Но чтобы выделить существенные свойства, нужно сначала отвлечься от второстепенных.

Инкапсуляция — это принцип, согласно которому любой класс должен рассматриваться как чёрный ящик — пользователь класса должен видеть и использовать только интерфейсную часть класса и не вникать в его внутреннюю реализацию.

3. Событие. Структура программы, управляемой событиями. Сообщение. Цикл обработки сообщений.

Delphi-приложения, выполняемые в среде Windows, как и любое Windows-приложение, получает сообщение о возникающих для него событиях: нажатие клавиши, передвижение мыши и т.п. Управление приложением фактически сводится к обработке получаемых сообщений. Методы, в которых содержится код обработки события, называется обработчиком событий.

Читайте также:  Помидоры заготовки простой способ

Среда Delphi поддерживает в качестве языка программирования приложений объектно-ориентированный язык программирования Object Pascal. Программы среды Delphi обычно разбиваются на ряд модулей (units). Каждый модуль сохраняется в отдельном pas-файле.

При построении приложения происходит линкование всех файлов модулей проекта.

Главный файл проекта (главный модуль) хранится в dpr-файле.

ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ:

1.Что такое объект и какими свойствами он обладает?

2.Какие отношения между объектами вы знаете?

3.Что такое класс?

4.Какие отношения между классами вы знаете?

5.Что такое событие и обработчик события?

6.Опишите структуру программы, управляемой событиями.

Источник

1 0 . «Эпизодическое» объектно-ориентированное программирование

ООП – Организация Освобождения Палестины.
Аббревиатура.

Резонный вопрос – почему так поздно приступаем к знакомству с ООП? Я тоже считаю, что некоторые главы книги только бы выиграли от их изложения в объектно-ориентированной нотации. Но, сказавши «а», следовало бы сказать и «б», т.е. пришлось бы полностью изложить принципы ООП, а это было бы не совсем правильно:

эта технология ориентирована на создание уже достаточно больших проектов, хотя отдельные части проекта (например, методы классов) все равно разрабатываются в рамках традиционной технологии структурного программирования. Поэтому, на мой консервативный взгляд, чтобы почувствовать преимущества технологии ООП, надо иметь опыт разработки проектов определенной сложности в традиционной технологии;

многие механизмы объектно-ориентированного Си прекрасно иллюстрируются средствами классического Си, чтобы понимать первое, нужно знать второе;

все предыдущие главы иллюстрированы небольшими по объему программами, для которых объектно-ориентированная нотация (именно как для примеров) не обязательна;

ООП – это постановка процесса программирования «с ног на голову», (или с головы на ноги), а это лучше сделать не в середине изложения материала;

И, наконец, такой «монстр» как Си++, пытающийся сочетать в себе все и вся, имеет не совсем удобную, излишне открытую и довольно громоздкую объектно-ориентированную нотацию. Поэтому данный материал следует рассматривать как приглашение к знакомству с тотальными средами ООП, например, Java или C#.

10.1 Объекты и классы

Объект, метод, класс: определения и свойства

«Классами называются большие группы людей, различающиеся по их месту в исторически определен­ной системе общественного производства, по их отношению) к средствам произ­водства, по их роли в общественной организации труда, а следователь­но, по способам получения и размерам той доли общественного богатства, которой они располагают» Ленинское определение классов.

Строго говоря, реализовать идеи ООП можно в классической среде программирования, соблюдая дух, а не букву технологии. Например, библиотека функций, работающая на общую структуру данных, может в первом приближении считаться классом.

Прописные истины объектно-ориентированного подхода

Объектно-ориентированный подход не ограничен синтаксисом. Следует соблюдать не только букву, но и дух ООП. Но даже в самой реализации понятий класса и объекта в языке программирования имеется много очевидных, но не всегда упоминаемых вещей, которые следует помнить. Попробуем их здесь перечислить.

для каждого объекта создается экземпляр данных;

методы класса, с которыми работает объект, представляют собой единственный экземпляр программного кода в сегменте команд, который одинаково выполняется для всех объектов (разделяется ими);

при вызове метода объект, для которого он выполняется, идентифицируется указателем текущего объекта this, задающим контекст текущего объекта.

Таким образом, связка «объект-метод» преобразуется в традиционную последовательность действий: «вызов функции – метода класса с фактическим параметром – указателем на текущий объект».

int a; // struct A < int a; >;

public: void F() < a++; >// void A::F(A *this) < this->a++; >

если элементы данных класса имеют взаимосвязанные значения, то класс должен поддерживать установленные для них соглашения;

если объект данных класса ссылается на внешние структуры данных, то при синтаксическом копировании объекта необходимо обеспечить независимость связанной структуры данных в объекте-копии (создать ее копию или обеспечить разделение – см. «конструктор копирования»;

если объект содержит идентификаторы каких-либо внешних ресурсов (например, номер коммуникационного порта), то действия класса должны быть аналогичными.


рис. 101-1. Объект: граница ответственности транслятора и программы

double * pd ; // Внутренняя СД – дин. массив коэффициентов

public : void add ( double D 2[], int n 2)<> // Нарушение закрытости – параметр – внутренняя СД

void add ( poly & T )<> // Правильно: параметр – объект того же класса

По отношению к методам это означает, что интерфейс класса (набор методов) должен быть максимально разнообразен, методы должны сочетаться в любых комбинациях, давая широкое разнообразие возможностей работы с объектом.

Полезный совет: желательно избегать многообразия форм представления внутренних данных объекта. Чем их меньше, тем проще обеспечить его целостность и корректность. Например, лучше иметь фиктивный динамический массив, чем NULL-указатель. В примере с классом степенного полинома «пустой» полином лучше представить динамическим массивом с единственным нулевым коэффициентом.

double * pd ; // Внутренняя СД – дин. массив коэффициентов

public : poly () < n =0; pd = NULL ; >// Нежелательно: NULL – отсутствие массива

«Ложась спать, программист ставит рядом два стакана: один полный – если захочет пить, и один пустой – если не захочет». Анекдот в тему.

// Класс степенного полинома – заголовок класса (объявление)

int n; // степень полинома

double *pd; // динамический массив коэффициентов

double & get ( int k ); // получение ссылки на коэффициент

void add ( poly & T ); // сложение объектов (1=1+2)

void mul ( poly & T ); // умножение объектов объектов (1=1+2)

Целостность объекта. Конструктор. Деструктор

Требование целостности и корректности объекта означают, что объект – это нечто большее, чем просто переменная. При создании переменной ее инициализация вовсе не обязательна, в то время как создание объекта должно сопровождаться установлением его начального состояния (инициализация данных, резервирование памяти, ресурсов, установление связей и т.д.). Аналогичные обратные действия необходимо выполнить при его уничтожении перед освобождением памяти. С этой целью в классе вводятся специальные методы – конструкторы и деструктор. Их имена совпадают с именем класса. Конструкторов для данного класса может быть сколь угодно много, они отличаются формальными параметрами, деструктор же всегда один и имеет имя, предваренное символом «

Читайте также:  Способы утраты нормативно правовых актов юридической силы

«. Если конструктор имеет формальные параметры, то в определении переменной-объекта после ее имени должны присутствовать в скобках значения фактических параметров.

// Класс степенного полинома – конструкторы и деструктор

int n; // степень полинома

double *pd; // динамический массив коэффициентов

n=0; // с нулевым коэффициентом

n=m; // с нулевыми коэффициентами

load(n0,p); > // используется вспомогательный метод load

load(T.n, T.pd); > // (конструктор копирования)

Момент вызова конструктора и деструктора определяется временем создания и уничтожения объектов:

для автоматических объектов — конструктор вызывается при входе в функцию (блок), деструктор — при выходе из него;

для динамических объектов — конструктор вызывается при выполнении оператора new, деструктор — при выполнении оператора delete.

В Си++ возможно определение массива объектов класса. При этом конструктор и деструктор автоматически вызываются в цикле для каждого элемента массива и не должны иметь параметров. При выполнении оператора delete для указателя на массив объектов его необходимо предварять скобками.

struct poly < . >; // определение класса

poly a,b(6), c (3, D ); // Статические объекты – конструкторы

// пустой полином, заданной размерности и из массива

poly *p,* q ; // Указатели на объект

poly c,d( c ); // Автоматические объекты

p = new poly ; // Динамический объект

q = new poly [ n ]; // Динамический массив объектов

delete p; // Уничтожение динамического объекта

delete [] q ; // Уничтожение динамического массива объектов

> // Уничтожение автоматических объектов

Замечание: процесс конструирования «вложен» в процесс выделением памяти под переменную. Конструктор вызывается сразу же после выделения памяти, а деструктор – перед ее освобождением.

A(int a1) // Конструктор

A &INC() < a++; return *this; >// Метод класса — инкремент

Класс – структурированный тип с ограниченным доступом

«Настоящий» классы в Си++ отличается от структурированного типа одной единственной мелочью: в классе вводятся ограничения доступа. Естественно, это синтаксические ограничения, и при желании их можно исключить простым редактированием заголовка класса. Это «дисциплинирующие» ограничения, позволяющие установить зоны ответственности программистов – разработчика класса и пользователя класса, обеспечить необходимую закрытость.

В процессе программирования класса участвуют два действующих лица с различной компетенцией: разработчик класса, пишущий его внутренний код, и пользователь класса – программист, создающий объекты этого класса и вызывающий для них его методы. Но ограничения касаются не самих программистов, а кода, который они создают. Внутреннее программирование класса – это разработка программного кода, который находится в теле разрабатываемого класса (точнее, в теле его методов). Внешнее программирование – это разработка кода вне тела проектируемого класса, который создает объекты класса, работает с данными этих объектов и вызывает методы.

Формально класс отличается от структурированного типа ключевым словом class (вместо struct ) и наличием двух областей доступа в теле класса:

закрытая (личная) часть, допускает только внутреннее программирование и закрыта при доступе через объект вне класса. По правилам синтаксиса закрытая часть начинается сразу же вслед за заголовком класса. Она также может быть обозначена меткой private;

открытая (общая) часть класса допускает любой доступ, в том числе и внешний. Она всегда явно обозначается меткой public.

Стандартным является размещение данных объекта в личной части, а методов — в общей части класса. Тогда закрытая личная часть определяет содержимое объекта, а методы общей части образуют интерфейс объекта «к внешнему миру».

// Класс степенного полинома

int n; // степень полинома

double *pd; // динамический массив коэффициентов

public:… // метка открытой части

Другие варианты размещения данных и методов в личной и общей части класса встречаются реже, но тоже обоснованы:

в общей части класса могут быть размещены данные, изменение которых пользователем класса не может привести к катастрофическим последствиям (например, цвет фигуры). Естественно, что класс будет учитывать изменение этих данных только при вызове методов (например, при перерисовке фигуры);

в личной части класса может быть размещен внутренний метод, необходимый для работы самого класса. Это могут быть вспомогательные действия, вынесенные за пределы конкретных методов, либо такие операции, корректное выполнение которых требует дополнительных действий.

Таким образом, в первом приближении класс отличается от структуры четко определенным интерфейсом доступа к его элементам. И наоборот, структура — это класс без личной части.

Иногда требуется ввести исключения из правил доступа, когда некоторой функции или классу требуется разрешить доступ к личной части объекта класса. Тогда в определении класса, к объектам которого разрешается такой доступ, должно быть объявление функции или другого класса как «дружественных». Это согласуется с тем принципом, что сам класс определяет права доступа к своим объектам «со стороны».

Объявление дружественной функции представляет собой прототип функции, переопределяемой операции или имя класса, которым разрешается доступ, предваренное ключевым словом friend.

// Классы и функции, дружественные классу A

int x; // Личная часть класса

. // Все «друзья» имеют доступ к x

friend void C::fun(A&);

friend void xxx(A&,int);

friend void C::operator+( А &);

«Друг – это тот, кто имеет исключительное право лезть тебе в душу (личную часть) в любое время».

Возвращаясь к классу полиномов, сразу же заметим, что в нем можно по большей части обойтись без дружественности. Закрытость же касается только данных (размерность и указатель на динамический массив), а также методов, связанных с управлением динамической памятью при изменении размерности полинома.

Задача управления динамической памятью должна быть решена раз и навсегда в начале проектирования класса, чтобы в дальнейшем к ней не возвращаться. Удобнее всего сделать это в виде внутренних методов управления размерностью объекта. Предпочтительнее также создавать дополнительные локальные объекты требуемой размерности, нежели создавать в явном виде динамические структуры данных.

// Класс степенного полинома

int n; // степень полинома

double *pd; // динамический массив коэффициентов

void load(int n0, double p[])<

Читайте также:  Обои под покраску способы окрашивания

n=n0; // закрытый метод загрузки массива

pd=new double[n+1]; // — не всегда корректно вызывается

double *pd1=new double[n1+1];

for (; i n 1; i ++) pd 1[ i ]=0;// прописать старшие коэффициенты нулями

delete []pd; // удалить старый массив

pd=pd1; // считать новый за старый

> // память не перераспределяется

public :… // метка открытой части

Рассмотрим еще один метод, интересный с точки зрения требований закрытости. Метод возвращает ссылку на выбранный коэффициент полинома, что позволяет работать с ним как по чтению, так и по записи. Хотя это «приоткрывает» доступ к внутренним данным объекта, но реальное использование этой ссылки «во вред объекту» и доступ через нее к другим коэффициентам требует большого искусства и не может быть произведено несознательно (по ошибке). Поэтому такую операцию можно считать безопасной.

// Класс степенного полинома

int n; // степень полинома

double *pd; // динамический массив коэффициентов

static double foo=0; // вне пределов массива — ссылка

if ( k k > n ) return foo ; // на «левую» статическую переменную

Взаимодействие данных и алгоритма в ООП

Проблема «Что первично — курица или яйцо?» применительно к программированию звучит как «Что первично: алгоритм (процедура, функция) или обрабатываемые им данные». В традиционной технологии программирования взаимоотношение алгоритм (процедуры, функции) — данные имеют более-менее свободный характер, причем алгоритм является ведущим в этой связке: функция вызывает функцию, передавая данные друг другу по цепочке. Соответственно, технология структурного проектирования, прежде всего, уделяет внимание разработке алгоритма. Она может быть выражена одной фразой – программирование (выполнение программы) «от функции к функции».

В технологии ООП взаимоотношения данных и алгоритма имеют более регулярный характер: во-первых, класс объединяет в себе данные и методы (функции). Во-вторых, схема взаимодействия функций и данных принципиально иная. Метод (функция), вызываемый для одного объекта, как правило, не вызывает другую функцию непосредственно. Для начала он должен иметь доступ к другому объекту (создать, получить указатель, использовать внутренний объект в текущем и т.д.), после чего он уже может вызвать для него один из известных методов. Следовательно, структура программы определяется взаимодействием объектов различных классов между собой, а процесс выполнения программы выражается фразой «объект-метод-объект».


рис.101-4. Программирование в цепочке «объект-метод-объект»

Особенности модульного проектирования в технологии ООП

· заголовочный файл не должен содержать конструкций языка, порождающих программный код, он должен целиком состоять из определений типов, объявлений переменных и функций и заголовка класса;

· в заголовке класса может присутствовать объявление метода – заголовок со списком типов параметров (прототип), ограниченный точкой с запятой. Это означает, что в заголовочнике упоминается только факт его наличия (с заданным именем и интерфейсом). Тогда в файле тела класса должно быть определение метода, содержащее его заголовок и тело. Заголовок повторяет объявление с одним маленьким отличием: имя метода дается в полной форме в виде имя_класса::имя_метода;

· файл тела класса должен подключать свой заголовочный файл директивой include ;

· для того, чтобы другой класс или main могли создавать объекты некоторого класса и применять к ним методы, необходимо подключать заголовочный файл директивой include ;

· все имена заголовочных файлов и файлов тела класса должны быть включены в проект;

int a; // Данные класса

void add ( A &); // Объявление (прототип) метода

A mul ( A &); // Объявление (прототип) метода

//————————Определение методов класса – файл A . cpp

# include “ A . h ” // Подключение собственного заголовочника

tmp . a *= T . a ; // заголовок с полным именем и тело

//———————— Доступ из другого класса – файл B . h

# include “ A . h ” // Подключение заголовочника класса A

# include “ A . h ” // Подключение заголовочника класса A

A aa , bb ; // Создание объектов класса A

aa . add ( bb ); // Работа с объектами класса A

Естественно, никто не запрещает «свалить все классы в одну кучу», не используя проекта. Для небольших программ это простительно, но не эстетично.

Лабораторный практикум

Разработать класс для требуемого типа данных: внутреннее представление данных, конструкторы, деструктор, методы ввода/вывода, изменения содержимого отдельных элементов. Необходимый материал для вар.14- 18 см . в 9.1.

1. Правильная дробь, представленная целой частью, числителем и знаменателем.

3. Целое число, представленное в виде массива байтов. .Каждый байт хранит 2 цифры числа (часть числа в диапазоне 0..99). Знак числа представлен отдельно.

4. Целое положительное число, представленное в виде массива его простых множителей (произведение которых дает это число).

5. Целое положительное число, представленное в виде массива остатков от деления на первые n 6. Вектор на плоскости, представленный в полярной системе координат (длина, угол поворота).

7. Вещественное число в эспоненциальной форме: нормализованная дробная часть (в диапазоне 0.99. 0.1) — double и целый показатель степени — int.

8. Матрица переменной размерности, представленная динамическим массивом указателей на строки матрицы (линейные динамические массивы).

9. Матрица переменной размерности, представленная динамическим массивом, в котором строки матрицы расположены последовательно друг за другом.

10. Разреженная матрица переменной размерности, ненулевые коэффициенты представлены динамическим массивом с элементами (x,y,v) координаты, значение.

11. Разреженная матрица переменной размерности, ненулевые коэффициенты представлены односвязным списком с элементами (x,y,v) координаты, значение.

12. Разреженная матрица переменной размерности, ненулевые коэффициенты представлены двусвязным циклическим списком с элементами (x,y,v) координаты, значение.

13. Множество, элементами которого являются целые числа. Операции объединения и пересечения множеств, добавления элемента, проверки на вхождение, разности множеств.

14. Целые произвольной длины со знаком во внешней форме представления в виде строки цифр в прямом коде. Знак представлен отдельным элементом данных.

15. Целые произвольной длины со знаком во внешней форме представления в виде строки цифр в прямом коде. Знак представлен старшей цифрой (0 /1).

16. Целые произвольной длины со знаком во внешней форме представления в виде строки цифр в дополнительном коде.

17. Целые произвольной длины во внутреннем двоичном представлении (динамический массив байтов) в прямом коде. Знак представлен отдельным элементом данных.

18. Целые произвольной длины во внутреннем двоичном представлении (динамический массив байтов) в дополнительном коде.

Источник

Оцените статью
Разные способы