Китайский или японский способ умножения

Китайское или японское умножение


В России мы привыкли умножать числа традиционным способом, которому нас учили в школе, записывая числа-множители столбиком (подробнее про наше умножение ). Однако в азиатских странах, таких как Япония и Китай принято считать иначе. Для созерцательного восточного менталитета важна непременная визуализация. Даже общепризнанные в мире арабские цифры китайцы и японцы записывают иероглифами. Именно с особенностью азиатской графической системы связан японский и китайский способ умножения чисел.

Это видео показывает, как умножать по-японски и по-китайски:

Многим покажется, что такой способ японского или китайского умножения слишком сложен и запутан, но это только на первый взгляд. Именно визуализация, то есть изображение всех точек пересечения прямых (множителей) на одной плоскости, дает нам зрительную поддержку, тогда как традиционный способ умножения подразумевает большое количество арифметических действий только в уме. Китайское или японское умножение помогает не только быстро и эффективно умножать двухзначные и трехзначные числа друг на друга без калькулятора, но и развивает эрудицию. Согласитесь, не каждый сможет похвастаться тем, что на практике владеет древнейшим китайским методом умножения (*), который актуален и прекрасно работает и в современном мире.

*) Японская или китайская таблица умножения? Археологами в Японии была найдена деревянная табличка с фрагментом таблицы умножения, которая предположительно была изготовлена в VIII веке. Учёные полагают, что подобные таблицы использовались японскими императорскими чиновниками, которым было необходимо осваивать разные науки, в том числе и арифметику.
Обнаруженная табличка — самая древняя из всех найденных в Японии ранее. Интересно, что иероглифы, которыми записаны цифры, по стилю графического начертания очень похожи на те, которые использовались как официальное письмо во времена китайской династии Тан VII-X века. Исходя из этого, ученые предположили, что таблица была скопирована из китайского учебника арифметики того времени, то есть вся японская таблица умножения была заимствована из Китая.

Именно к своим соседям в Китай ездили высокопоставленные японцы каждый год, чтобы перенять у них разные науки, такие как арифметику. Древняя китайская таблица умножения была не из простых, так как включала в себя умножение двузначных чисел друг на друга. Вряд ли все японские чиновники могли выучить такую таблицу наизусть, поэтому и носили с собой на работу что-то типа шпаргалок, фрагмент одной из которых и представляет собой найденная археологами в Японии табличка.

Итак, японская таблица умножения была заимствована у китайцев, которые, согласно некоторым гипотезам, и были одними из создателей первой арифметической системы, о чем свидетельствуют археологические находки, содержащие фрагменты таблицы умножения, возраст которых ученые оценили в 2700-3000 лет.

Источник

Техника умножения чисел по-китайски.

В Китае давно существует свои метод перемножения чисел, отличный от привычного для нас. Он позволяет легко и быстро перемножать двух или трехзначные числа с помощью нехитрой схематичной таблицы, которую может изобразить даже школьник младших классов.

Как же китайцы умножают числа? Давайте разберемся!

Сначала берем любые два двухзначных числа, например, 12 и 14. В привычном нам русском варианте, мы бы поставили между ними знак умножения «x» и выполнили подсчет в столбик или в уме (для тех, у кого левое полушарие мозга работает активнее). Но в Китае люди оказались намного креативней и придумали высчитывать ответ благодаря черточкам. Перед вами числа 12 и 14, рядом на листочке или в тетради (кому как удобно) вы рисуете десятки в правой части, а единицы в левой. Из числа 12 у вас получится: одна палочка справа и две слева.

Читайте также:  Способы вязания жгутов крючком

Второе число раскладываем также, но рисуем черточки параллельно первым. Исход: одна сверху и четыре снизу.

Дальше самое интересное! Мы условно группируем пересечения на сотые, десятки и единицы вот таким образом:

Самое первое пересечение в левом верхнем углу –сотые неизвестного числа. Так как линии пересекаются всего раз, то первая цифра ответа – 1.

Теперь мы считаем десятки, нам нужно посмотреть на нижний левый угол и правый верхний. Посчитаем…

Получается 6 точек пересечения. В ответ пишем цифру 6.

В последнюю очередь считаем единицы искомого числа. В правом нижнем углу всего 8 точек пересечения, ответ 8.

Ответ готов! 12 x 14 =168.

Китайцы умножают числа без калькуляторов, с помощью этого метода возможно решить практически любой пример.

Предлагаю разобрать еще один вариант, где двузначное число умножается на трехзначное.

Берем выражение 25 x 123, первое число будем записывать по вертикали. А второе по горизонтали, разбив его на сотни, десятки и единицы.

Здесь выделяется четыре области пересечения прямых, т.к. число в ответе получится четырехзначное.

Пересчитав все точки пересечения, выходит вот такое число. Не спешите говорить, что тут ошибка и автор явно не освоил китайский метод умножения. Сейчас мы перейдем к финальной части и все сразу встанет на свои места.

Записываем это огромное и некрасивое число ступенями и складываем значения. (Не забываем превратить однозначные числа в двузначные).

Вот такой ответ у нас получается, для уверенности можете проверить все на калькуляторе.

Такой метод используется не только в Китае, но и в других Азиатских странах. На первый взгляд он может показаться долгим и не совсем понятным. Я думаю тут играет роль специфика нашего восприятия информации. Китайцы, использующие в повседневной жизни множество иероглифов, привыкли запоминать информацию визуально, в то время как мы наоборот лучше воспринимаем на слух или заучиваем как стишки на всю жизнь.

Источник

Способы умножения

Все знают, как умножать в столбик, немного меньше людей знают об умножении линиями, но есть и другие интересные способы.

Умножение чисел — это очень простая операция, фактически, то же самое, что и суммирование. Конечно, пока сами числа не большие.

2х3=2+2+2 (три раза по два) или 24х6=24+24+24+24+24+24 (шесть раз по 24)

То есть, знать таблицу умножения вовсе не обязательно? Да, но с ней удобнее. Например, в случае умножения чисел 235х4596, число 4596 придется сложить 235 раз! Или наоборот, 235 сложить 4596 раз…

Слово «сложить» употреблено не зря. Вот простой способ в этом убедится. Нужно взять листок бумаги сложить его 5 раз в одном направлении, а потом 3 раза в другом. Получится действие 5х3. Считаем получившиеся от сгибания прямоугольники — их 15. Это то же самое, если бы мы взяли 3 полоски ткани (или чего угодно) длинной 5 и сложили вместе.

Как ни крути, а получается — 15!

Читайте также:  Засолка острых перцев холодным способом

Необычные способы умножения

В школе нас учат использовать два инструмента: таблицу Пифагора (считается что таблицу умножения придумал именно этот греческий математик) и умножению «в столбик». Это действительно самые эффективные инструменты? Кроме них есть еще несколько интересных способов умножать числа. Может, какой-то из них будет проще и учить таблицу не придется?

По-крестьянски

Использовался для определения площади земельного участка. Например, имеем поле длинной 6 и шириной 5.

Чтобы узнать, сколько будет 6х5 делаем следующее: левое число делим на 2, а правое умножаем на 2, пока от левого числа не останется единица.

2/2= 1 | 10*2=20

4х5=20, все правильно, так же как и 1х20=20

Что происходит при таком способе? Мы разделяем прямоугольник пополам, пока его ширина не станет равняться единице. Делить на два не сложно.

Вот только что будет, если одна из сторон не будет делиться на 2? Будет долгий и не такой уж простой процесс.

6/2=3 | 2*2=4 → 12

3/2=1,5 | 4*2=8 → 12

1,5/2=0,75 | 8*2=16 → 12

Если в левой части четное число — эту строку не считаем, если значение меньше единицы — тоже отбрасываем, остается вторая и третья строка, а это 8+4=12. А если представить, что умножит нужно 173 на 735? Нет, такой способ умножения не самый легкий и простой.

Можно делить/умножать и на 3, но тогда нужно знать таблицу умножения «на три», тогда уж и 5 и 7 и… Да, удобнее выучить ее всю. Также, если будет необходимо перемножить большие числа, процесс будет очень длинным.

Восточный способ

То ли китайский, то ли японский способ умножения, при помощи линий, он же «графический». Его суть состоит в том, что цифры первого числа изображаются в виде параллельных линий, а второго — перпендикулярных им. Количество пересечений и является результатом умножения. То есть, здесь знать таблицу умножения не нужно, достаточно уметь суммировать. Например, так:

2 х 3 и даже 15 х 12

Японский или китайский метод, суть не меняется

Как работает умножение линиями?

Первое число (фиолетовым цветом на картинке) рисуется так: Снизу вверх, слева на право, сначала тысячи, потом сотни, десятки, единицы. Второе число (голубым цветом на картинке) рисуется наоборот: сверху-вниз.

В первом примере все просто 2 и 3. Две линии пересекают 3 другие, получается 6 точек. Во втором, сначала рисуем 15 — единицу (один десяток), потом пять линий изображающих 5 (пять единиц). Потом (12) перпендикулярно ей вторую единицу и 2 линии.

Далее нужно посчитать пересечения, но уже в обратном направлении. Начинать справа. В примере это 10, 7 и 1. Результат складывается в столбик:

Если сравнить с традиционным «столбиком», сперва может показаться, что японско-китайский метод проще…

А что делать, если нужно умножить 10 на 12? Как изобразить «ноль» линией? Никак, он участия не принимает, можно нарисовать его пунктиром и пересечение не считать, все просто…

Но вот уже случае 853х951 рисовать и считать точки придется очень много. Старый-добрый столбик опять окажется удобнее. Каждый сам может попробовать перемножить 9878 и 8794 «японским методом» и засечь необходимое время.

Японский метод с нулем

Эта методика не универсальна, совсем не подходит, когда числа достаточно большие, зато ее очень просто объяснить маленьким детям, которые еще не знают таблицу умножения.

Жалюзи

Встречается еще и название «решетки» и индийский метод умножения. Поверить в индийское происхождение проще всего, если вспомнить, кто вообще придумывал эту вашу математику в древности. Итак, чтобы умножить два числа, нужно построить матрицу (если угодно — таблицу, мы же пытаемся быть проще).

Читайте также:  Дополнительные способы фиксации допроса

Умножаем 45 на 82

Так как в каждом числе по 2 цифры, таблица будет 2х2. Каждую ячейку нежно перечеркнуть по диагонали. Далее записываем слева-на-право, и сверху-вниз цифры 4, 5, 8, 2 напротив каждой ячейки. Начинаем умножать цифры находящиеся напротив друг-друга. 4 на 8, 5 на 8, 4 на 2 и 5 на 2.

Ну вот опять нужна таблица умножения, иначе придется долго складывать числа.

Результаты записываются в ячейки хитрым способом, десятки над диагональю, а единицы — под ней. Но, если значение меньше 10 (то есть это одна, а не две цифры), то вместо десятки верху пишется «ноль», как при умножении 4х5. Но можно оставить поле пустым.

Теперь, чтобы узнать результат, нужно посчитать сумму в каждой диагонали, как показано на картинке. Сверху-вниз:

3

0+2+4=6

8+1=9

0

В результате получаем 3690.

Тоже достаточно просто, только с небольшими значениями, для умножения трехзначных чисел придется рисовать таблицу размером 3х3=9 ячеек.

Какой метод умножения лучше?

Если перепробовать все способы умножения чисел, становится очевидно, что все представленные альтернативные методы умножения — это все варианты знакомого «столбика». Также операции разбиваются на более мелкие: сначала умножение, потом — суммирование.

Только в так называемом китайском/японском способе умножение как таковое не используется (вместо него пересечение линий) и в этом варианте действительно можно обойтись без таблицы умножения, но придется много рисовать, что повышает вероятность совершить ошибку при пересчете точек пересечения.

Есть мнение, что популярность умножения в столбик вызвана именно компактностью записи. Так на умножение требуется меньше бумаги, меньше чернил (да, чернила раньше использовались и тоже стоили денег) и соответственно времени.

Знать нетрадиционные методики интересно и даже полезно, но школьная таблица умножения, все же быстрее, а если вы знаете как умножать в столбик — это удобнее, чем любой другой способ. Если, конечно, не считать калькулятор.

Источник

Обмен опытом

Суть китайско-японского метода

Суть китайского метода состоит в визуализации произведения с помощью графического изображения процесса умножения. Другими словами, числа изображаются в виде прямых линий, сотни, десятки и единицы отделяются промежутками и располагаются параллельно друг другу на плоскости. Один из множителей располагается горизонтально сверху вниз, второй — вертикально слева направо. Количество пересечения линий, образующих десятки при умножении двузначных чисел, будет первой цифрой в произведении. Точки пересечения десятков и единиц — вторая цифра результата, количество точек, образовавшихся при пересечении всех единиц — третья цифра.

Перемножим два двузначных числа: 13*12=156

Шаг 1 Горизонтально рисуем линии первого числа 13:
Единицу – одной линией. Тройку – чуть ниже тремя параллельными линиями

Шаг 2 Вертикальными линиями слева направо рисуем второе число 12:
Единицу – одной линией
Двойку – чуть отступив вправо двумя линиями

Шаг 3 Подсчитываем количество точек в трех группах:
Левый верхний угол – 1 (Сотни)
Правый верхний и левый нижний углы (Диагональ) – 5 (Десятки)
Правый нижний угол – 6 (Единицы)

Шаг 4 Подсчитываем результат:

Перемножим два двузначных числа: 15*23=345

Источник

Оцените статью
Разные способы