Кэширование это способ взаимного функционирования двух типов запоминающих устройств

Кэширование данных. Иерархия памяти. Принцип действия кэш-памяти.

Память представляет собой иерархию запоминающих устройств (ЗУ), отличающихся средним временем доступа к данным, объемом и стоимостью хранения одного бита. Фундаментом этой пирамиды ЗУ служит внешняя память, как правило, представляемая жестким диском. Она имеет большой объем (десятки и сотни Гб), но скорость доступа к данным невысока. Время доступа к диску измеряется в 10 -3 с. На следующем уровне – более быстродействующая (время доступа – примерно 10-20*10 -9 с) и менее объемная (от десятков Мб до нескольких Гб) оперативная память, реализуемая на относительно медленной динамической памяти DRAM. Для хранения данных, к которым необходимо обеспечить быстрый доступ, используются компактные быстродействующие запоминающие устройства на основе статической памяти SRAM, объем которых составляет от нескольких десятков до нескольких сотен Кб, а время доступа к данным обычно не превышает 8*10 -9 с. И наконец, внутренние регистры процессора, которые также могут быть использованы для промежуточного хранения данных. Общий объем регистров составляет несколько десятков байт, а время доступа определяется быстродействием процессора и равно в настоящее время примерно 2-3*10 -9 с.

Таким образом, чем больше объем устройства, тем менее быстродействующим оно является. Более того, стоимость хранения данных в расчете на один бит также увеличивается с ростом быстродействия устройств. Однако пользователю хотелось бы иметь и недорогую, и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы.

Кэш-память — это способ совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который за счет динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ позволяет, с одной стороны, уменьшить среднее время доступа к данным, а с другой стороны, экономить более дорогую быстродействующую память. Неотъемлемым свойством кэш-памяти является ее прозрачность для программ и пользователей. Система не требует никакой внешней информации об интенсивности использования данных; ни пользователи, ни программы не принимают никакого участия в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.
Кэшем часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств — «быстрое» ЗУ.

Кэширование — это универсальный метод, пригодный для ускорения доступа к оперативной памяти, к диску и к другим видам ЗУ. Если кэширование применяется для уменьшения среднего времени доступа к оперативной памяти, то в качестве кэша используют быстродействующую статическую память. Если кэширование используется системой ввода-вывода для ускорения доступа к данным, хранящимся на диске, то в этом случае роль кэш-памяти выполняют буферы в оперативной памяти, в которых оседают наиболее активно используемые данные. Виртуальную память также можно считать одним из вариантов реализации принципа кэширования данных, при котором оперативная память выступает в роли кэша по отношению к внешней памяти — жесткому диску. Правда, в этом случае кэширование используется не для того, чтобы уменьшить время доступа к данным, а для того, чтобы заставить диск частично подменить оперативную память за счет перемещения временно неиспользуемого кода и данных на диск с целью освобождения места для активных процессов. В результате наиболее интенсивно используемые данные «оседают» в оперативной памяти, остальная же информация хранится в более объемной и менее дорогостоящей внешней памяти.

Читайте также:  Способ складывания губ трубачами

Одна из возможных схем кэширования. Содержимое кэша представляет собой совокупность записей обо всех загруженных в нее элементах данных из основной памяти. Каждая запись об элементе данных включает в себя:

— значение элемента данных;

— адрес, который этот элемент данных имеет в основной памяти;

— дополнительную информацию, которая используется для реализации алгоритма замещения данных в кэше и обычно включает признак модификации и признак действительности данных.

При каждом обращении к основной памяти по физическому адресу просматривается содержимое кэш-памяти с целью определения, не находятся ли там нужные данные. Кэш-память не адресуема, поэтому поиск нужных данных осуществляется по содержимому — по взятому из запроса значению поля адреса в оперативной памяти. Далее:

— если данные в кэш-памяти, то есть есть кэш-попадание (cache-hit), они считываются из нее и результат передается источнику запроса;

— если нужных данных нет в кэш-памяти, то есть произошел кэш-промах (cache-miss), они считываются из основной памяти, передаются источнику запроса и одновременно с этим копируются в кэш. Эффективность кэширования зависит от вероятности попадания в кэш.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Кэширование данных. Иерархия запоминающих устройств

Память вычислительной машины представляет собой иерархию запоминающих устройств (ЗУ), отличающихся средним временем доступа к данным, объемом и стоимостью хранения одного бита. Фундаментом этой пирамиды запоминающих устройств служит внешняя память, как правило, представляемая жестким диском. Она имеет большой объем (десятки и сотни гигабайт), но скорость доступа к данным является невысокой. Время доступа к диску измеряется миллисекундами.

На следующем уровне располагается более быстродействующая (время доступа равно примерно 10-20 наносекундам) и менее объемная (от десятков мегабайт до нескольких гигабайт) оперативная память, реализуемая на относительно медленной динамической памяти DRAM.

Для хранения данных, к которым необходимо обеспечить быстрый доступ, используются компактные быстродействующие запоминающие устройства на основе статической памяти SRAM, объем которых составляет от нескольких десятков до нескольких сотен килобайт, а время доступа к данным обычно не превышает 8 не.

Все перечисленные характеристики ЗУ быстро изменяются по мере совершенствования вычислительной аппаратуры. В данном случае важны не абсолютные значения времени доступа или объема памяти, а их соотношение для разных типов запоминающих устройств.

И наконец, верхушку в этой пирамиде составляют внутренние регистры процессора, которые также могут быть использованы для промежуточного хранения данных. Общий объем регистров составляет несколько десятков байт, а время доступа определяется быстродействием процессора и равно в настоящее время примерно 2-3 не.

Читайте также:  Что такое дистанционный способ продажи алкоголя

Таким образом, можно констатировать печальную закономерность — чем больше объем устройства, тем менее быстродействующим оно является. Более того, стоимость хранения данных в расчете на один бит также увеличивается с ростом быстродействия устройств. Однако пользователю хотелось бы иметь и недорогую, и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы.

Кэш-память, или просто кэш (cache), — это способ совместного функционирова­ния двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который за счет динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ позволяет, с одной стороны, уменьшить среднее время доступа к данным, а с дру­гой стороны, экономить более дорогую быстродействующую память.

Неотъемлемым свойством кэш-памяти является ее прозрачность для программ и пользователей. Система не требует никакой внешней информации об интенсив­ности использования данных; ни пользователи, ни программы не принимают ни­какого участия в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.

Кэш-памятью, или кэшем, часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств — «быстрое» ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объем. «Медленное» ЗУ далее будем называть основной памятью, противопоставляя ее вспо­могательной кэш-памяти.

Источник

Принцип кеширования и организация кэш памяти.

Кэш-память — это способ организации совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счёт динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ.

Кэш-памятью часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств — «быстрое» ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объём. Важно, что механизм кэш-памяти является прозрачным для пользователя, который не должен сообщать никакой информации об интенсивности использования данных и не должен никак участвовать в перемещении данных из ЗУ одного типа в ЗУ другого типа; всё это делается автоматически системными средствами.

Например, для уменьшения среднего времени доступа процессора к данным, хранящимся в оперативной памяти, между процессором и оперативной памятью помещается быстрое ЗУ, называемое просто кэш-памятью. В качестве такового может быть использована, например, ассоциативная память. Содержимое кэш-памяти представляет собой совокупность записей обо всех загруженных в неё элементах данных. Каждая запись об элементе данных включает в себя адрес, который этот элемент данных имеет в оперативной памяти, и управляющую информацию: признак модификации и признак обращения к данным за некоторый последний период времени.

Использование кэш-памяти позволяет значительно ускорить вы­полнение многих операций в системе за счёт свойства локальности, наблюдаемого в выполняемых программах.

В системах, оснащённых кэш-памятью, каждый запрос к оперативной памяти выполняется в соответствии со следующим алгоритмом:

Читайте также:  Электрографический способ печати признаки

1. Просматривается содержимое кэш-памяти с целью определения, не находятся ли нужные данные в кэш-памяти; кэш-память не является адресуемой, поэтому поиск нужных данных осуществляется по содержимому — значению поля «адрес в оперативной памяти», взятому из запроса. Причём, поиск должен выполняться быстро, поэтому эта память обычно является ассоциативной.

2. Если данные обнаруживаются в кэш-памяти, то они считываются из неё, и результат передаётся в процессор.

3. Если нужных данных нет, то они вместе со своим адресом копируются из оперативной памяти в кэш-память, и результат вы­полнения запроса передаётся в процессор. При копировании данных может оказаться, что в кэш-памяти нет свободного места, тогда вы­бираются данные, к которым в последний период было меньше всего обращений, для вытеснения из кэш-памяти. Если вытесняемые дан­ные были модифицированы за время нахождения в кэш-памяти, то они переписываются в оперативную память. Если же эти данные не были модифицированы, то их место в кэш-памяти объявляется свободным.

На практике в кэш-память считывается не один элемент данных, к которому произошло обращение, а целый блок данных, это увеличивает вероятность кэш-попадания, то есть нахождения нуж­ных данных в кэш-памяти.

Использование механизма старения для ЗУ типа КЭШ.

Поскольку любой кеш всегда меньше запоминающего устройства, всегда возникает необходимость для записи новых данных в кеш удалять из него ранее записанные. Эффективное удаление данных из кеша подразумевает удаление наименее востребованных данных. В общем случае нельзя сказать, какие данные являются наименее востребованными, поэтому для этого используются эвристики. Например, можно удалять данные, к которым происходило наименьшее число обращений с момента их загрузки в кеш (leastfrequentlyused, LFU) или же данные, к которым обращались наименее недавно (leastrecentlyused, LRU), или же комбинация этих двух подходов (LRFU).

Кроме того, аппаратные ограничения по реализации кеша часто требуют минимальных расходов на учет служебной информации о ячейках, которой является также и использование данных в них. Наиболее простым способом учета обращений является установка 1 бита: было обращение или не было. В таком случае для удаления из кеша может использоваться алгоритм часы (или второго шанса), который по кругу проходит по всем ячейками, и выгружает ячейку, если у нее бит равен 0, а если 1 — сбрасывает его в 0.

Более сложным вариантом является использование аппаратного счетчика для каждой ячейки. Если этот счетчик фиксирует число обращений к ячейке, то это простой вариант алгоритма LFU. Он обладает следующими недостатками:

· может произойти переполнение счетчика (а он, как правило, имеет очень небольшую разрядность) — в результате будет утрачена вся информация об обращениях к ячейке

· данные, к которым производилось множество обращений в прошлом, будут иметь высокое значение счетчика даже если за последнее время к ним не было обращений

Для решения этих проблем используется механизм старения, который предполагает периодический сдвиг вправо одновременно счетчиков для всех ячеек. В этом случае их значения будут уменьшаться (в 2 раза), сохраняя пропорцию между собой. Это можно считать вариантом алгоритм LRFU.

Источник

Оцените статью
Разные способы