- Кэш память способы организации
- Методы организации кэш-памяти
- Характерные особенности типовой структуры кэш-памяти. Способы размещения в ней данных и механизмы преобразования адресов. Специфика строения кэш-памяти с прямым, полностью или частично ассоциативным распределением, а также с распределением секторов.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Подобные документы
Кэш память способы организации
Рис. 5.36. Типовые значения ключевых параметров для кэш-памяти рабочих станций и серверов
Все термины, которые были определены раньше могут быть использованы и для кэш-памяти, хотя слово «строка» (line) часто употребляется вместо слова «блок» (block).
На рисунке 5.36 представлен типичный набор параметров, который используется для описания кэш-памяти.
Рассмотрим организацию кэш-памяти более детально, отвечая на четыре вопроса об иерархии памяти.
1. Где может размещаться блок в кэш-памяти?
Принципы размещения блоков в кэш-памяти определяют три основных типа их организации:
- Если каждый блок основной памяти имеет только одно фиксированное место, на котором он может появиться в кэш-памяти, то такая кэш-память называется кэшем с прямым отображением (direct mapped). Это наиболее простая организация кэш-памяти, при которой для отображение адресов блоков основной памяти на адреса кэш-памяти просто используются младшие разряды адреса блока. Таким образом, все блоки основной памяти, имеющие одинаковые младшие разряды в своем адресе, попадают в один блок кэш-памяти, т.е.
- Если некоторый блок основной памяти может располагаться на любом месте кэш-памяти, то кэш называется полностью ассоциативным (fully associative).
- Если некоторый блок основной памяти может располагаться на ограниченном множестве мест в кэш-памяти, то кэш называется множественно-ассоциативным (set associative). Обычно множество представляет собой группу из двух или большего числа блоков в кэше. Если множество состоит из n блоков, то такое размещение называется множественно-ассоциативным с n каналами (n-way set associative). Для размещения блока прежде всего необходимо определить множество. Множество определяется младшими разрядами адреса блока памяти (индексом):
Далее, блок может размещаться на любом месте данного множества.
Диапазон возможных организаций кэш-памяти очень широк: кэш-память с прямым отображением есть просто одноканальная множественно-ассоциативная кэш-память, а полностью ассоциативная кэш-память с m блоками может быть названа m-канальной множественно-ассоциативной. В современных процессорах как правило используется либо кэш-память с прямым отображением, либо двух- (четырех-) канальная множественно-ассоциативная кэш-память.
2. Как найти блок, находящийся в кэш-памяти?
У каждого блока в кэш-памяти имеется адресный тег, указывающий, какой блок в основной памяти данный блок кэш-памяти представляет. Эти теги обычно одновременно сравниваются с выработанным процессором адресом блока памяти.
Кроме того, необходим способ определения того, что блок кэш-памяти содержит достоверную или пригодную для использования информацию. Наиболее общим способом решения этой проблемы является добавление к тегу так называемого бита достоверности (valid bit).
Адресация множественно-ассоциативной кэш-памяти осуществляется путем деления адреса, поступающего из процессора, на три части: поле смещения используется для выбора байта внутри блока кэш-памяти, поле индекса определяет номер множества, а поле тега используется для сравнения. Если общий размер кэш-памяти зафиксировать, то увеличение степени ассоциативности приводит к увеличению количества блоков в множестве, при этом уменьшается размер индекса и увеличивается размер тега.
3. Какой блок кэш-памяти должен быть замещен при промахе?
При возникновении промаха, контроллер кэш-памяти должен выбрать подлежащий замещению блок. Польза от использования организации с прямым отображением заключается в том, что аппаратные решения здесь наиболее простые. Выбирать просто нечего: на попадание проверяется только один блок и только этот блок может быть замещен. При полностью ассоциативной или множественно-ассоциативной организации кэш-памяти имеются несколько блоков, из которых надо выбрать кандидата в случае промаха. Как правило для замещения блоков применяются две основных стратегии: случайная и LRU.
В первом случае, чтобы иметь равномерное распределение, блоки-кандидаты выбираются случайно. В некоторых системах, чтобы получить воспроизводимое поведение, которое особенно полезно во время отладки аппаратуры, используют псевдослучайный алгоритм замещения.
Во втором случае, чтобы уменьшить вероятность выбрасывания информации, которая скоро может потребоваться, все обращения к блокам фиксируются. Заменяется тот блок, который не использовался дольше всех (LRU — Least-Recently Used).
Достоинство случайного способа заключается в том, что его проще реализовать в аппаратуре. Когда количество блоков для поддержания трассы увеличивается, алгоритм LRU становится все более дорогим и часто только приближенным. На рисунке 5.37 показаны различия в долях промахов при использовании алгоритма замещения LRU и случайного алгоритма.
Размер кэш-памяти | LRU Random LRU Random | LRU Random | 16 KB | 5.18% 5.69% | 4.67% 5.29% | 4.39% 4.96% | 64 KB | 1.88% 2.01% | 1.54% 1.66% | 1.39% 1.53% | 256 KB | 1.15% 1.17% | 1.13% 1.13% | 1.12% 1.12% | |
Рис. 5.37. Сравнение долей промахов для алгоритма LRU и случайного алгоритма замещения
при нескольких размерах кэша и разных ассоциативностях при размере блока 16 байт
4. Что происходит во время записи?
При обращениях к кэш-памяти на реальных программах преобладают обращения по чтению. Все обращения за командами являются обращениями по чтению и большинство команд не пишут в память. Обычно операции записи составляют менее 10% общего трафика памяти. Желание сделать общий случай более быстрым означает оптимизацию кэш-памяти для выполнения операций чтения, однако при реализации высокопроизводительной обработки данных нельзя пренебрегать и скоростью операций записи.
К счастью, общий случай является и более простым. Блок из кэш-памяти может быть прочитан в то же самое время, когда читается и сравнивается его тег. Таким образом, чтение блока начинается сразу как только становится доступным адрес блока. Если чтение происходит с попаданием, то блок немедленно направляется в процессор. Если же происходит промах, то от заранее считанного блока нет никакой пользы, правда нет и никакого вреда.
Однако при выполнении операции записи ситуация коренным образом меняется. Именно процессор определяет размер записи (обычно от 1 до 8 байтов) и только эта часть блока может быть изменена. В общем случае это подразумевает выполнение над блоком последовательности операций чтение-модификация-запись: чтение оригинала блока, модификацию его части и запись нового значения блока. Более того, модификация блока не может начинаться до тех пор, пока проверяется тег, чтобы убедиться в том, что обращение является попаданием. Поскольку проверка тегов не может выполняться параллельно с другой работой, то операции записи отнимают больше времени, чем операции чтения.
Очень часто организация кэш-памяти в разных машинах отличается именно стратегией выполнения записи. Когда выполняется запись в кэш-память имеются две базовые возможности:
- сквозная запись (write through, store through) — информация записывается в два места: в блок кэш-памяти и в блок более низкого уровня памяти.
- запись с обратным копированием (write back, copy back, store in) — информация записывается только в блок кэш-памяти. Модифицированный блок кэш-памяти записывается в основную память только когда он замещается. Для сокращения частоты копирования блоков при замещении обычно с каждым блоком кэш-памяти связывается так называемый бит модификации (dirty bit). Этот бит состояния показывает был ли модифицирован блок, находящийся в кэш-памяти. Если он не модифицировался, то обратное копирование отменяется, поскольку более низкий уровень содержит ту же самую информацию, что и кэш-память.
Оба подхода к организации записи имеют свои преимущества и недостатки. При записи с обратным копированием операции записи выполняются со скоростью кэш-памяти, и несколько записей в один и тот же блок требуют только одной записи в память более низкого уровня. Поскольку в этом случае обращения к основной памяти происходят реже, вообще говоря требуется меньшая полоса пропускания памяти, что очень привлекательно для мультипроцессорных систем. При сквозной записи промахи по чтению не влияют на записи в более высокий уровень, и, кроме того, сквозная запись проще для реализации, чем запись с обратным копированием. Сквозная запись имеет также преимущество в том, что основная память имеет наиболее свежую копию данных. Это важно в мультипроцессорных системах, а также для организации ввода/вывода.
Когда процессор ожидает завершения записи при выполнении сквозной записи, то говорят, что он приостанавливается для записи (write stall). Общий прием минимизации остановов по записи связан с использованием буфера записи (write buffer), который позволяет процессору продолжить выполнение команд во время обновления содержимого памяти. Следует отметить, что остановы по записи могут возникать и при наличии буфера записи.
Метод | Доля промахов | Потери при промахе | Время обращения при попадании | Сложность аппаратуры | Примечания | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Увеличение размера блока | + | — | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Повышение степени ассоциативности | + | — | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кэш-память с вспомогательным кэшем | + | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Псевдоассоциативные кэши | + | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Аппаратная предварительная выборка команд и данных | + | 2 | Предварительная выборка данных затруднена | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Предварительная выборка под управлением компилятора | + | 3 | Требует также неблокируемой кэш-памяти | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Специальные методы для уменьшения промахов | + | 0 | Вопрос ПО | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Установка приоритетов промахов по чтению над записями | + | 1 | Просто для однопроцессорных систем | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Использование подблоков | + | + | 1 | Сквозная запись + подблок на 1 слово помогают записям | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Пересылка требуемого слова первым | + | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Неблокируемые кэши | + | 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кэши второго уровня | + | 2 | Достаточно дорогое оборудование | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Простые кэши малого размера | — | + | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Обход преобразования адресов во время индексации кэш-памяти | + | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Конвейеризация операций записи для быстрого попадания при записи | + | 1 Рис. 5.38. Обобщение методов оптимизации кэш-памяти При промахе во время записи имеются две дополнительные возможности:
Обычно в кэш-памяти, реализующей запись с обратным копированием, используется размещение записи в кэш-памяти (в надежде, что последующая запись в этот блок будет перехвачена), а в кэш-памяти со сквозной записью размещение записи в кэш-памяти часто не используется (поскольку последующая запись в этот блок все равно пойдет в память). Увеличение производительности кэш-памяти Формула для среднего времени доступа к памяти в системах с кэш-памятью выглядит следующим образом: Эта формула наглядно показывает пути оптимизации работы кэш-памяти: сокращение доли промахов, сокращение потерь при промахе, а также сокращение времени обращения к кэш-памяти при попадании. На рисунке 5.38 кратко представлены различные методы, которые используются в настоящее время для увеличения производительности кэш-памяти. Использование тех или иных методов определяется прежде всего целью разработки, при этом конструкторы современных компьютеров заботятся о том, чтобы система оказалась сбалансированной по всем параметрам. Источник Методы организации кэш-памятиХарактерные особенности типовой структуры кэш-памяти. Способы размещения в ней данных и механизмы преобразования адресов. Специфика строения кэш-памяти с прямым, полностью или частично ассоциативным распределением, а также с распределением секторов.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную нижеСтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны. Методы организации кэш-памяти В функциональном отношении кэш-память рассматривается как буферное ЗУ, размещённое между основной (оперативной) памятью и процессором. Основное назначение кэш-памяти — кратковременное хранение и выдача активной информации процессору, что сокращает число обращений к основной памяти, скорость работы которой меньше, чем кэш-памяти. За единицу информации при обмене между основной памятью и кэш-памятью принята строка, причём под строкой понимается набор слов, выбираемый из оперативной памяти при одном к ней обращении. Хранимая в оперативной памяти информация представляется, таким образом, совокупностью строк с последовательными адресами. В любой момент времени строки в кэш-памяти представляют собой копии строк из некоторого их набора в ОП, однако расположены они необязательно в такой же последовательности, как в ОП. Построение кэш-памяти может осуществляться по различным принципам, которые будут рассмотрены ниже. 1. Типовая структура кэш-памяти Рассмотрим типовую структуру кэш-памяти (рис. 1), включающую основные блоки, которые обеспечивают её взаимодействие с ОП и центральным процессором. Рис. 1. Типовая структура кэш-памяти Строки, составленные из информационных слов, и связанные с ними адресные теги хранятся в накопителе, который является основой кэш-памяти. Адрес требуемого слова, поступающий от центрального процессора (ЦП), вводится в блок обработки адресов, в котором реализуются принятые в данной кэш-памяти принципы использования адресов при организации их сравнения с адресными тегами. Само сравнение производится в блоке сравнения адресов (БСА), который конструктивно совмещается с накопителем, если кэш-память строится по схеме ассоциативной памяти. Назначение БСА состоит в выявлении попадания или промаха при обработке запросов от центрального процессора. Если имеет место кэш-попадание (т.е. искомое слово хранится в кэш-памяти, о чём свидетельствует совпадение кодов адреса, поступающего от центрального процессора, и одного из адресов некоторого адресного тега), то соответствующая строка из кэш-памяти переписывается в регистр строк. С помощью селектора-демультиплексора из неё выделяется искомое слово, которое и направляется в центральный процессор. В случае промаха с помощью блока формирования запросов осуществляется инициализация выборки из ОП необходимой строки. Адресация ОП при этом производится в соответствии с информацией, поступившей от центрального процессора. Выбираемая из памяти строка вместе со своим адресным тегом помещается в накопитель и регистр строк, а затем искомое слово передается в центральный процессор. Для высвобождения места в кэш-памяти с целью записи выбираемой из ОП строки одна из строк удаляется. Определение удаляемой строки производится посредством блока замены строк, в котором хранится информация, необходимая для реализации принятой стратегии обновления находящихся в накопителе строк. 2. Способы размещения данных в кэш-памяти Существует четыре способа размещения данных в кэш-памяти: Рассмотрим подробно каждый способ размещения и механизмы преобразования адресов. Предположим, что кэш содержит 128 строк, размер строки 16 слов, а основная память может содержать 16384 строки. Для адресации основной памяти используется 18 бит. Из них 14 старших показывают адрес строки, а младшие 4 — адрес слова внутри этой строки. Строки КЭШ-памяти указываются 7-разрядными адресами. При прямом распределении место хранения строк в кэш-памяти однозначно определяется по адресу строки. Структура кэш-памяти с прямым распределением показана на рис. 2. Рис. 2. Структура кэш-памяти с прямым распределением Адрес основной памяти состоит из 14-ти разрядного адреса строки и 4-х разрядного адреса слова внутри этой строки. Адрес строки подразделяется на старшие 7 бит (тег) и младшие 7 бит (индекс). Для того чтобы поместить в кэш-память строку из основной памяти с адресом АВС, выбирается область внутри кэш-памяти с адресом В, который равен 7 младшим битам адреса строки АВ. Преобразование из АВС в В сводится только к выборке младших 7 бит адреса строки АВ. По адресу В в кэш-памяти может быть помещена любая из 128 строк основной памяти, имеющих адрес, 7 младших бит которого равны адресу В. Для того, чтобы определить, какая именно строка хранится в памяти данных в настоящий момент времени, используется запоминающее устройство емкостью 7*128 слов, в котором помещается по соответствующему адресу в качестве тега 7 старших бит адреса строки, хранящейся в данное время по адресу В кэш-памяти. Это запоминающее устройство называется теговой памятью. Память, в которой хранятся строки, называется памятью данных. Тег из теговой памяти считывается по адресу В, который образует 7 младших бит адреса строки АВ. Параллельно считыванию тега осуществляется доступ к памяти данных с помощью 11 младших бит (ВС) адреса основной памяти АВС. Если тег и старшие 7 бит адреса основной памяти совпадают, значит что данная строка существует в памяти данных (строка-V), то есть осуществляется кэш-попадание. Если же происходит кэш-промах, то есть тег отличается от старших 7 бит, то из основной памяти считывается соответствующая строка, а из кэш-памяти удаляется строка-V, определяемая 7 младшими разрядами адреса строки, а на ее место помещается строка, считанная из основной памяти. Осуществляется также обновление соответствующего тега в теговой памяти. Способ прямого распределения реализуется довольно просто, однако из-за того, что место хранения строки в кэш-памяти однозначно определяется по адресу строки, вероятность сосредоточения областей хранения строк в некоторой части кэш-памяти высока, то есть замены строк будут происходить довольно часто. В этой ситуации эффективность кэш-памяти заметно снижается. 4. Полностью ассоциативное распределение При таком способе размещения данных каждая строка основной памяти может быть размещена на месте любой строки кэш-памяти. Структура кэш-памяти с полностью ассоциативным распределением выглядит, как показано на рис 3. Рис. 3. Структура кэш-памяти с полностью ассоциативным распределением При полностью ассоциативном распределении механизм преобразования адресов должен давать ответ на вопрос, существует ли копия строки с произвольным адресом в кэш-памяти, и, если существует, то по какому адресу. Для этого необходимо, чтобы теговая память являлась ассоциативной памятью. Входной информацией для ассоциативной памяти тегов является тег А (14-ти разрядный адрес строки), а выходной информацией — адрес строки внутри кэш-памяти (С). Каждое слово теговой памяти состоит из 14-разрядного тега и 7-разрядного адреса С строки внутри кэш-памяти. Ключом для поиска адреса строки внутри кэш-памяти является тег А (старшие 14 разрядов адреса основной памяти). При совпадении ключа А с одним из тегов Т теговой памяти (случай попадания) происходит выборка соответствующих данному тегу адреса С и обращение к памяти данных. Входной информацией для памяти данных является 11-ти разрядное слово ВС (7 бит адреса строки В + 4 бита адреса слова в данной строке С). В случае несовпадения ключа ни с одним из тегов теговой памяти (случай промаха) формируется запрос к основной памяти на выборку строки с соответствующим адресом и считывание этой строки. По этому способу при замене строк кандидатом на удаление могут быть все строки в кэш-памяти. 5. Частично ассоциативное распределение При данном способе размещения, несколько соседних строк (фиксированное число, не менее двух) из 128 строк кэш-памяти образуют структуру называемую группой. Структура кэш-памяти, основанная на использовании частично ассоциативного распределения, показана на рис. 3. В данном случае в одну группу Е входят 4 строки А, В, С, D. Рис. 3.Структура кэш-памяти, основанная на использовании частично ассоциативного распределения. Адрес строки НЕ основной памяти (14 бит) разделяется на две части: Н-тег (старшие 9 бит) и Е — адрес группы (младшие 5 бит). Адрес строки внутри кэш-памяти, состоящий из 7 бит, разделяется на адрес группы Е (5 бит) и адрес строки внутри группы (2 бит: 00,01,10,11). Для помещения в кэш-память строки, хранимой в ОП по адресу НЕF, необходимо выбрать группу с адресом Е. При этом не имеет значения, какая из четырех строк в группе может быть выбрана. Для выбора группы используется метод прямого распределения, а для выбора строки в группе используется метод полностью ассоциативного распределения. Когда центральный процессор запрашивает доступ по адресу НЕF, то осуществляется обращение к массиву тегов по адресу Е, выбирается группа из четырёх тегов (а, b, с, d), каждый из которых сравнивается со старшими 9 битами (Н) адреса строки. На выходе четырех схем сравнения формируется унитарный код совпадения ( Н=А — код: 1000, Н=В — код: 0100, Н=С — код: 0010, Н=D — код: 0001), который на шифраторе преобразуется в двухразрядный позиционный код, служащий адресом для выбора банка дан-ных (00,01,10,11) — адрес строки внутри группы. Одновременно осуществляется обращение к массиву данных (банкам V1, V2, V3, V4,) по адресу ЕF (9 бит) и считывание из банка V2 требуемой строки или слова. При пересылке новой строки в кэш-память удаляемая из нее строка выбирается из четырех строк соответствующего набора (группы). 6. Распределение секторов По этому способу основная память разбивается на секторы, состоящие из фиксированного числа строк, кэш-память также разбивается на секторы, состоящие из такого же числа строк. Допустим, в секторе 16 строк, а в строке — 16 слов. Структура кэш-памяти с распределением секторов представлена на рис. 4. В адресе основной памяти 10 старших бит задают адрес сектора А, следующие 4 бита — адрес строки В в секторе и младшие 4 бита — адрес слова С в строке. При данной организации кэш-памяти, распределение секторов в кэш-памяти и основной памяти осуществлено полностью ассоциативно, то есть, каждый сектор А основной памяти может соответствовать любому сектору D в кэш-памяти. К каждой строке V, хранящейся в кэш-памяти, добавляется один бит достоверности (действительности); он показывает, совпадает или нет содержимое этой строки с содержи-мым строки в основной памяти, которая в данный момент анализируется на соответствие строки кэш-памяти. Если слова, запрашиваемого центральным процессором при доступе, не существует в кэш-памяти (бит достоверности, выбранный по адресу ВD равен 0), то сначала центральный процессор проверяет, был ли сектор А, содержащий это слово, помещен ранее в кэш-память. Если он отсутствует, то один из секторов кэш-памяти заменяется на этот сектор. Рис. 4. Структура кэш-памяти с распределением секторов. Если все сектора кэш-памяти используются, то выбирается один какой-нибудь сектор, и при необходимости только некоторые строки этого сектора возвращаются в основную память, а этот сектор можно использовать дальше. Когда осуществляется доступ к сектору А в кэш-памяти и строка В, содержащая нужное слово С, пересылается из основной памяти, то бит достоверности устанавливается до пересылки строки. Все биты достоверности других строк этого сектора сбрасываются. Если сектор А, содержащий слово В доступ к которому запрашивается, уже находится в кэш-памяти, то, в том случае когда бит достоверности строки, содержащей это слово, равен 0, этот бит устанавливается и строка пересылается из основной памяти в данную область кэш-памяти. В том случае, когда бит достоверности уже равен 1, нужное слово можно считать из кэш-памяти. Подобные документыРазработка алгоритма работы и структуры контроллера кэш-памяти с полностью ассоциативным отображением основной памяти. Представление операционной и управляющей частей черного ящика устройства. Схема алгоритма контроллера кэш на уровне микроопераций. курсовая работа [1,0 M], добавлен 19.03.2012 Внутренний кэш. Смешанная и разделенная кэш-память. Статическая и динамическая память. TLB как разновидность кэш-памяти. Организация кэш-памяти. Отображение секторов ОП в кэш-памяти. Иерархическая модель кэш-памяти. Ассоциативность кэш-памяти. курсовая работа [229,1 K], добавлен 04.11.2006 Объем двухпортовой памяти, расположенной на кристалле, для хранения программ и данных в процессорах ADSP-2106x. Метод двойного доступа к памяти. Кэш-команды и конфликты при обращении к данным по шине памяти. Пространство памяти многопроцессорной системы. реферат [28,1 K], добавлен 13.11.2009 Стратегии размещения информации в памяти. Алгоритмы распределения адресного пространства оперативной памяти. Описание характеристик модели и ее поведения, классов и элементов. Выгрузка и загрузка блоков из вторичной памяти. Страничная организация памяти. курсовая работа [708,6 K], добавлен 31.05.2013 Как осуществляется трансляция адресов при страничной организации. Что такое компактировка и как с ее помощью избавиться от внешней фрагментации. Что такое регистр таблицы страниц, сегментация. Методы распределения памяти в виде отдельных сегментов. контрольная работа [236,2 K], добавлен 23.12.2016 Физическая организация памяти компьютера. Организация структуры обработки потока данных. Степень и уровни параллелизма. Оценка иерархической организации памяти. Динамическая перестройка структуры. Микросхемы запоминающих устройств. Кэш-память процессора. лекция [2,4 M], добавлен 27.03.2015 Сравнение различных способов обхода данных. Заполнение массива для случайного обхода. Изучение понятия кэш-памяти, ее основных размеров и функций. Оптимальный и неоптимальный алгоритм умножения двух матриц с точки зрения порядка обхода данных в памяти. презентация [94,7 K], добавлен 02.06.2013 Источник |