- ПРОДУКЦИЯ И УСЛУГИ
- Как добывают уран?
- Уран: свойства, способы добычи и обогащения, применение
- Способы добычи
- Открытый
- Подземный
- Скважинное подземное выщелачивание
- Обогащение урана
- Причины
- Степени
- Технологии
- Применение
- Ядерное топливо
- Геология
- Другие сферы
- Месторождения в России и мире
- Мировые запасы
- Страны, добывающие уран
- Перспективные способы добычи урана
- Разработка урана имеет особое значение для промышленности
- Современные способы добычи урана
ПРОДУКЦИЯ И УСЛУГИ
Как добывают уран?
Среди встречающихся в Земной коре элементов максимальной массой обладает уран. Около 99,4% земного урана представляет собой уран-238, оставшиеся 0,6% приходятся на уран-235, применяемый при разработках ядерного оружия.
Существует 3 основных способа добычи урана. Первый способ – открытый, подходит для тех случаев, когда рудное тело находится близко к поверхности земли. При открытом способе добыче роют бульдозерами большую яму и экскаваторами грузят руду в самосвалы, которые везут ее к перерабатывающему комплексу.
Второй способ – подземный – используется при глубоком залегании рудного тела. Способ этот более дорогостоящий и подходит при высокой концентрации урана в породе. При подземном способе пробуривается вертикальная шахта, от которой отходят горизонтальные выработки. Глубина шахт может доходить до двух километров. В горизонтальных штреках шахтеры долбят породу, поднимают руду наверх на специальных грузовых лифтах и везут дальше на перерабатывающий комплекс. Породу измельчают, смешивают с водой и удаляют ненужные примеси. Дальше проводят выщелачивание концентрата, обычно с помощью серной кислоты. Из раствора с помощью ионно-обменных смол выделяется осадок солей урана, имеющих характерный желтый цвет, за что они получили название желтый кек (от англ. yellow cake). Желтый кек еще содержит достаточно много примесей, от которых его очищают на аффинажном производстве и после прокаливанием получают закись-окись урана (U3O8) — конечный продукт, которым даже торгуют на бирже.
Но существует и третий способ. Он кардинально отличается от первых двух и называется скважинное подземное выщелачивание (СПВ). При СПВ бурят 6 скважин по углам шестиугольника, через которые в рудное тело закачивают серную кислоту. В центре шестиугольника бурят еще одну скважину и через нее выкачивают на поверхность раствор, насыщенный солями урана. Продуктивный раствор пропускают через сорбционные колонны, в которых соли урана собираются на специальной смоле. Смолу в свою очередь снова обрабатывают серной кислотой и так несколько раз, пока концентрация урана в растворе не станет достаточной. А дальше снова желтый кек, очистка и получение закиси окиси-урана
Источник
Уран: свойства, способы добычи и обогащения, применение
Уран – тяжёлый слаборадиоактивный металл серо-стального цвета с серебристо-белым глянцем. Современное использование данного химического элемента связано напрямую с атомной энергетикой. Также он является сырьём для получения другого важного в ядерной энергетике элемента – плутония.
Процесс открытия минерала и дальнейшее исследование его уникальных в физическом отношении свойств, напрямую связано с именами множества исследователей и учёных того времени. Среди которых можно выделить:
- Немецкого натурфилософа Мартина Генриха Клапорта первым, восстановившим из руды один из наиболее распространённых минералов урана – настуран.
- Французского химика ЭженаПелиго, сумевшего получить чистый минерал и определить его атомный вес.
- Великого русского учёного Дмитрия Ивановича Менделеева – поставившего уран в соответствующую его характеристикам клетку периодической системы, задолго до открытия действительного атомного веса этого элемента.
- Знаменитого британского физика Эрнеста Резерфорда, открывшего два вида радиоактивного излучения урана.
- Советских академиков Юлия Борисовича Харитона и Якова Борисовича Зельдовича, доказавших возможность осуществления цепной ядерной реакции.
Естественно, что свой вклад в исследование этого основополагающего элемента ядерной физики и атомной энергетики, внесло множество учёных. Именно благодаря им были открыты следующие физико-химические свойства этого элемента:
- Тяжёлый, гибкий и ковкий металл, плотностью 18-19 г/см 3 .
- Температура плавления равняется +1132,3 0 C.
- Температура кипения составляет +4113 0 C.
- В порошкообразном состоянии при температуре свыше +150 0 C, уран способен самовозгораться.
- Обладает тремя кристаллическими модификациями, стабильными при определённых температурах: альфа, бета и гамма.
- Минерал радиоактивен изотопами: уран-238, уран-235, уран-234.
- Химически очень активный элемент, быстро вступающий в реакцию взаимодействия с кислородом воздуха, покрываясь при этом защитной оксидной плёнкой.
Способы добычи
Уран распространён в природе. По этому показателю он занимает 38 место среди других химических элементов. Больше всего этот радиоактивный металл сосредоточен в осадочных породах: углистых сланцах и фосфоритах. Наиболее важными для добычи минералами (всего их, имеющих промышленное значение, насчитывается 15 видов) являются:
- настуран,
- карнотит,
- соединения с ванадием и титаном,
- силикаты,
- фосфаты.
Метод извлечения урана на поверхность зависит от глубины залегания руд, породы месторасположения, состава изотопов и ряда иных признаков.
Открытый
Один из самых распространённых способов добычи полезных ископаемых при условии размещения их недалеко от наружного слоя земного грунта.
Именно его и приходится удалять, прибегая к вскрышным буровзрывным работам и перевозке пустой породы в отвалы. Для чего используется тяжёлая техника: бульдозеры, экскаваторы, погрузчики самосвалы. В дальнейшем с использованием того же оборудования разрабатывается ураносодержащее сырьё, затем отправляемое на переработку.
Строительство карьеров – дело достаточно дорогостоящее и объёмное по своим масштабам и привлекаемым ресурсам. Кроме того, оно связано с нанесением невосполнимого экологического ущерба месту разработки и окружающей местности.
Подземный
Способ ещё более затратный по сравнению с открытым методом, так как приходится проникать внутрь недр, чтобы достичь места залегания рудного тела. Другим неблагоприятным фактором является экономическое ограничение на строительство шахт, глубиной более 2 км, что нецелесообразно в связи со значительным удорожанием стоимости добытого минерального ресурса.
Однако, несмотря на эти обстоятельства и высокий уровень опасности для работающего персонала, именно этот способ позволяет добывать наиболее качественное сырьё. Технологический цикл подземной добычи включает в себя:
- откалывание (отбивание) материала,
- погрузку его на вагонетки или шахтные самосвалы,
- перевозку руды до бункера приёмки,
- скиповое поднятие на поверхность,
- транспортировку к местам переработки.
Скважинное подземное выщелачивание
В связи с множеством возникающих сложностей организационного и экономического порядка, всё чаще горнодобывающие предприятия начинают прибегать к методу скважинного подземного выщелачивания (СПВ).
Проведя геологические исследования, определяется контур месторождения, по периметру которого на необходимую глубину бурятся скважины. В них закачивается серная кислота – выщелачивающий реагент. Полученный раствор выкачивают уже через откачные скважины, пробуренные внутри контура.
Извлекаемую пульпу прогоняют через специальные сорбционные колонны, где урановые соли остаются на смоляных поверхностях. В дальнейшем эту смесь подвергают многократной очистке до получения сначала необходимой концентрации раствора, а затем – и до формирования закиси-окиси урана.
Обогащение урана
Добытая урановая руда содержит в своём составе 0,72% изотопов урана-235 ( 235 U). Остальную часть составляют:
Причины
Самостоятельно поддерживать ядерную реакцию способен только нуклид 235 U. Мало того, чтобы цепная реакция происходила стабильно – не важно: в ядерном реакторе или в атомном оружии – необходимо достичь его определённой концентрации, тем самым обеспечив высокую вероятность встречи нейтронов с атомами.
Именно для этого и проводится обогащение, то есть увеличение доли урана-235 в минерале. Однако, требуемый уровень концентрации этого изотопа в каждой из областей применения – свой.
Степени
Практическое применение имеют три степени обогащения урана, имеющие соответствующие процентному содержанию названия:
- Обеднённый уран представляет собой технологические отходы процесса обогащения. Содержание 235 U в нём колеблется в пределах: 0,1–0,3 %. Тем не менее, постепенно он находит широкий диапазон применения в качестве:
- химического катализатора в реакциях восстановления перекиси водорода и кислорода;
- космического, судового, автомобильного балласта и самолётного противовеса;
- средства радиационной защиты;
- бронебойного сердечника снарядов;
- танковой брони;
- ударного механизма буровых штанг,
- средства получения комплексного ядерного топлива, применение которого возможно в энергетических ядерных реакторах на тепловых нейронах.
- Низкообогащённый уран с концентрацией 235 U доходящей до 20%, широко используется в качестве топлива энергетических и научно-исследовательских ядерных реакторов.
- Высокообогащённый уран, содержащий в себе свыше 20% урана-235, применяется при изготовлении атомных и водородных бомб, а также в качестве длительно используемого ядерного топлива в реакторах морских судов и космических кораблей.
Технологии
В основе значительного количества технологий обогащения лежат стандартные физические процессы обретения различного ускорения телами, обладающими разной массой. Именно на этом принципе основано абсолютное большинство апробированных обогатительных методов.
- Термодиффузия – концентрирующая различные по массе изотопы в отдельных температурных зонах.
- Электромагнитная сепарация – отбирающая разно заряженные ионы в отдельные сборники.
- Газовая диффузия – использующая неодинаковую скорость проникновения частиц через мелкопористые мембраны.
- Центрифугирование – разделяющее газовую среду по скоростям вращающихся потоков.
- Аэродинамическая сепарация – создающая завихряющиеся потоки в соплах искривлённой конфигурации.
Существует также целый ряд лазерных технологий, пока что не получивших широкой промышленной эксплуатации.
Применение
Ядерное топливо
Основным направлением использования всех видов изотопов металлического урана является атомная энергетика. Именно в ядерных реакторах происходит регулируемая цепная реакция, позволяющая вырабатывать гигантские электрические мощности. Причём применение находит как низкообогащённый, так и высокообогащённый уран (в реакторах на быстрых нейтронах).
Геология
Геохронологическое использование урана (уран-свинцовый метод радиоизотопного датирования) даёт возможность определять возраст геологических пород и минералов. Это открывает широкие перспективы для исследования протекания геологических процессов в недрах нашей планеты.
Другие сферы
В качестве иных областей применения урана, прежде всего, необходимо упомянуть изготовление ядерного и термоядерного оружия. Кроме того, карбид урана-235 используется в качестве одного из компонентов топлива реактивных ядерных двигателей.
Также, некоторые соединения урана входят в состав красителей. Они (соединения) в своё время использовались в фотографии для улучшения световых показателей негативов и позитивов.
Месторождения в России и мире
Список крупнейших мировых ураносодержащих месторождений по странам мира:
- Австралия – 19 месторождений. Крупнейшими из них являются: ОлимпикДан – 3 тыс. тонн добычи ежегодно, Биверли – 1 тыс. тонн., Хонемун – 900 тонн.
- Казахстан. 16 месторождений. 6 наиболее значимых: Будёновское, Западный Мынкудук, Ирколь, Корсан, Южный Инкай, Харасан.
- Россия. 7 месторождений. Из них в эксплуатации находятся три: Аргунское, Жерловское, Источное.
- Канада. Известные урановые залежи на территории этой страны: МакАртур-Ривер, Сигар Лейк и «Проект Уотербери».
- ЮАР. Месторождение Доминион и рудники: Вааль-Ривер, Вестерн-Ариез, Палабора, Рандфонтейн.
- Нигер. 12 залежей. Наибольшие: Азелит, Арлит, Имурарен, Мадауэла.
- Намибия. 4 месторождения.
Мировые запасы
Планетарные запасы урана оцениваются по-разному. Согласно данным Всемирной ядерной ассоциации в 2017 году они составляли 6,1426 млн. тонн.
В других источниках указывается цифра в 5,5 млн. тонн. Хотя, при этом оговаривается, что разведанные запасы составляют 3,3 млн. тонн, а 2,2 – предполагаемые. Ещё не обнаруженные залежи оцениваются в 10,2 млн. тонн. В процентном соотношении урановые запасы размещены следующим образом по странам и континентам:
- Австралия – 40%.
- Канада – 15%.
- Казахстан – 13%.
- Бразилия – 8%.
- Южная Африка – 6,5%.
Страны, добывающие уран
Топ мировых стран-добытчиков (всего их насчитывается 14) ядерного топлива в 2018 году:
- Казахстан – 21,705 тыс. тонн. 41% мировой добычи, составляющей 53,498 тыс. тонн.
- Канада – 7,001 тыс. тонн. Что составляет 13% от общемирового уровня.
- Австралия – 6,517 тыс. тонн или 12%.
- Намибия – 5,525 тыс. тонн.
- Нигер – 2,911 тыс. тонн.
- Россия – 2,904 тыс. тонн.
- Узбекистан – 2,404 тыс. тонн.
- Китай – 1,855 тыс. тонн.
- Украина – 1,18 тыс. тонн.
- США – 582 тонны.
- Также добычей урана занимаются: Индия – 423 тонн, ЮАР – 346 тонн, Иран – 71 тонна и Пакистан – 45 тонн.
Источник
Перспективные способы добычи урана
В современном мире элемент под номером 92 в знаменитой таблице Менделеева имеет огромное значение. Во-первых, уран – это самое энергонасыщенное топливо из всех известных и используемых на сегодняшний день. Всего несколько килограммов этого вещества способны заменить тысячи кубометров газа и тонны нефти и угля, при этом количество выработанной электрической или тепловой энергии будет одинаковым. Во-вторых, добыча урана важна для получения другого энергетического элемента – плутония. И, наконец, уран — основной элемент для создания ядерного оружия
Первые упоминания об этом веществе, найденном в Рудных горах Саксонии, относятся к середине 16 века. «Черный смоляной камень», позднее названный урановой смолкой или настураном использовали для закладки уже выработанных серебряных рудников или выбрасывали в отвалы. На рубеже 18 – 19 веков урановые руды считались побочным материалом горной промышленности, а их уникальные свойства не были изучены. Официальным годом открытия элемента считают 1789 г., когда немецкий химик Мартин Клапрот присвоил ему название уран – в честь одной из планет Солнечной системы. Однако спустя некоторое время выяснилось, что новое вещество, о котором заявил ведущий ученый своего времени, это окисленная форма минерала. Элементную же его форму впервые удалось получить французскому химику Э. Пелиго спустя почти полвека, в 1841 г.
Разработка урана имеет особое значение для промышленности
Надо сказать, что с момента своего открытия и до середины 20 века мировая добыча урана осуществлялась, в основном, для получения радия. Это сопутствующее вещество использовали в процессе изготовления люминисцентной краски, которой покрывали диски часов и некоторые инструменты, оружейные прицелы, применяли в медицине для приготовления «радоновых ванн» и пр. Оксиды урана применяли в стекольном производстве в качестве красящего пигмента палитрой от бледно-желтого до темно-зеленого.
Свое промышленное значение уран получил в начале 40-х годов ХХ века, после того, как ученые опытным путем научились расщеплять урановое ядро и получать ядерную реакцию. Новые открытия, которые легли в основу современной ядерной физики и атомной энергетики, резко изменили перспективы дальнейшего практического применения элемента №92. С этого времени началось активное развитие урановой промышленности, а само вещество превратилось в главное стратегическое сырье, необходимое для осуществления масштабных военных программ. Возможность создания атомной бомбы и использования урана в качестве топлива, необходимого для работы ядерных реакторов, стали основными причинами, обусловившими высокий спрос на этот тяжелый металл.
Ученые выяснили, что содержание этого вещества в земной коре неравномерно – оно рассеяно во многих горных породах, в почве, и даже в воде морей и океанов. Подсчитано, что верхний слой Земли толщиной всего 20 км содержит почти 1014 тонн урана! Невероятно, но это количество может многие тысячелетия удовлетворять энергетические потребности человечества. Однако, несмотря на то, что средняя концентрация элемента в земной коре весьма велика, мест добычи урана, где его концентрация во много раз превышает среднее значение, на нашей планете очень мало.
Первые богатые ураном месторождения были обнаружены в 1913 г. в Африке. Немного позже были открыты Порт-Радий в Канаде, обл. Бейры в Португалии, Тюя Муюн в Узбекистане и Холм Радия в Австралии. Основной мировой запас урановых руд сосредоточен в Канаде, Конго и США. Что касается нашей страны, то добыча урана в России составляет около 7% от мирового объема. Дело в том, что многие российские месторождения расположены в труднодоступных районах, а большинство урановых запасов еще не разведаны, хотя прогнозные ресурсы весьма и весьма неплохие.
Современные способы добычи урана
На сегодняшний день известно три способа добычи урана, применение каждого из которых зависит от глубины залегания вещества и от его содержания в породе. Открытый или, как его еще называют, карьерный способ разработки применим лишь при неглубоком залегании металла. Сложностей в процессе добычи этим способом не возникает: для вскрытия и разработки задействуют бульдозеры, для погрузки руды – погрузчики, для вывоза на перерабатывающие предприятия – самосвалы. Стоит уточнить, что открытый способ все же представляет большую опасность для экологии, даже несмотря на то, что после завершения работ карьер засыпают, а на его поверхности проводят рекультивацию. Отработанная порода сохраняет до 85% радиационного фона урана, территория загрязняется солями тяжелых металлов и сульфидами, ядовитыми для организма и покрывается пылью с содержанием радиоактивных элементов.
Другой метод добычи урана – подземный или шахтный позволяет добывать руду более высокого сорта, чем в предыдущем случае, однако добыча становится рентабельной лишь при высоком качестве руды. Обычно глубина современных урановых рудников не превышает 2 км, поскольку строительство более глубоких проходов повышает себестоимость добытого вещества. Организация радиационной защиты в штольнях и шахтах становится главной задачей добывающих предприятий, для чего в них устанавливают современные вентиляционные системы, позволяющие выводить радон из рабочего пространства и направлять внутрь рудника свежий воздух.
Добыча урана методом подземного выщелачивания считается наиболее щадящей для экологии. Для вскрытия месторождения руды используют систему скважин, в которые закачивают специальный химический реагент. Растворяясь в пласте, он выщелачивает из него полезные вещества, после чего насыщенный соединениями урана, выкачивается на поверхность. Монолитные залежи вскрывают подземными горными выработками, в некоторых случаях используют буровзрывные работы. Эта прогрессивная технология добычи имеет ряд ограничений: ее разрешено использовать ниже уровня залегания грунтовых вод и только в песчанике.
В целом, использование геотехнологического метода, описанного выше, позволяет отрабатывать месторождения с невысоким содержанием урана и сложными условиями залегания. К тому же в несколько раз снижаются затраты на строительство горно-обогатительных предприятий и одновременно повышается производительность работ. Однако даже использование высокотехнологичных способов добычи и переработки урана не исключает вероятности технических ошибок, которые могут привести к серьезным загрязнениям окружающей среды серной кислотой, металлами, высокому уровню радиации, а значит сделать дальнейшее использование природных ресурсов невозможным. Поэтому каждый существующий и перспективный проект добычи урана в мире предполагает привлечение экологов и оценки возможного негативного воздействия на дикую среду, а также разработку программы восстановления эндогенной природы и дальнейший мониторинг ее состояния.
Источник