- Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.
- Найти определитель (детерминант) матрицы
- Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц
- Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц
- Теория. Определитель (детерминант) матрицы.
- Вычисление определителя матрицы 2×2
- Правило треугольника для вычисления определителя матрицы 3×3
- Вычисление определителя матрицы произвольного размера
- Решение задач с матрицами.
- Матричный калькулятор
- Ввод данных в матричный калькулятор
- Дополнительные возможности матричного калькулятора
- Теория. Матрицы
- Калькулятор матриц — действия с матрицами онлайн
- Как пользоваться калькулятором матриц
- Ввод данных и функционал
- Что умеет наш калькулятор матриц?
- Вычисление выражений с матрицами
- Из чего могут состоять выражения?
- Примеры корректных выражений
- Что такое матрица?
- Примеры матриц
- Элементы матрицы
- Некоторые теоретические сведения
- Определитель матрицы онлайн
- Описание калькулятора определителя матрицы
- Приведение матрицы к треугольному виду
- Приведение матрицы к треугольному виду (метод Гаусса)
- Приведение матрицы к треугольному виду (метод Барейса)
Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.
Используя этот онлайн калькулятор для вычисления определителя (детерминанта) матриц, вы сможете очень просто и быстро найти определитель (детерминант) матрицы.
Воспользовавшись онлайн калькулятором для вычисления определителя (детерминанта) матриц, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на транспонирование матриц, а также закрепить пройденный материал.
Найти определитель (детерминант) матрицы
Введите значения Матрицы:
Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц
- Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.
Теория. Определитель (детерминант) матрицы.
Вычисление определителя матрицы 2×2
Для матрицы 2×2 значение определителя равно разности произведений элементов главной и побочной диагоналей:
∆ = |
| = a 11· a 22 — a 12· a 21 |
Правило треугольника для вычисления определителя матрицы 3×3
Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.
+ | – |
∆ = |
| = |
Вычисление определителя матрицы произвольного размера
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Источник
Решение задач с матрицами.
Матричный калькулятор
Очистить | Размер × |
Транспонировать | Умножить на |
Найти определитель | Возвести в степень |
Найти ранг | Найти обратную |
Очистить | Размер × |
Транспонировать | Умножить на |
Найти определитель | Возвести в степень |
Найти ранг | Найти обратную |
Ввод данных в матричный калькулятор
В матричный калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности матричного калькулятора
- Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.
Теория. Матрицы
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Источник
Калькулятор матриц — действия с матрицами онлайн
С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.
Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji
Как пользоваться калькулятором матриц
- Выберите матрицу (или матрицы) с помощью переключателей ( )
- Укажите размер с помощью выпадающих списков под матрицей ( × )
- Заполните элементы (нулевые элементы можно не заполнять.)
- Выберите в выпадающем списке требуемую функцию и, если требуется, введите дополнительные параметры.
- Нажмите кнопку .
- Если вывод чисел не устраивает, просто поменяйте его — доступны три варианта представления: правильные дроби (2
Ввод данных и функционал
- В качестве элементов используются обыкновенные правильные дроби ( 1/2 , 29/7 , -1/125 ), десятичные дроби ( 12 , -0.01 , 3.14 ), а также числа в экспоненциальной форме ( 2.5e3 , 1e-2 ).
- Длина вводимых чисел ничем не ограничена, вводите хоть 1000 цифр, правда, возможно, придётся подождать, пока будут идти вычисления!
- Используйте для работы одну или две матрицы (чтобы выполнять операции с двумя матрицами, передвиньте переключатель второй матрицы).
- Вставляйте результат в A или B с помощью кнопок «Вставить в A» и «Вставить в B».
- Перетаскивайте (drag-and-drop) матрицы из результата в A или B.
- Используйте стрелки ( ← , ↑ , → , ↓ ) для перемещения по элементам
Что умеет наш калькулятор матриц?
Вычисление выражений с матрицами
Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.
Из чего могут состоять выражения?
- Целые и дробные числа
- Матрицы A, B
- Знаки арифметических действий: + — * /
- Круглые скобки для изменения приоритета операций: ( )
- Транспонирование: ^T
- Возведение в целую степень: ^
Примеры корректных выражений
- Cложение двух матриц: A+B , (A)+(B) , ((A) + B)
- Возведение линейной комбинации матриц в степень: (3A — 0.5B)^5
- Произведение транспонированной матрицы на исходную: A^TA
- Обратная матрица в квадрате для B: B^-2
Что такое матрица?
Матрицей размера n×m называется прямоугольная таблица специального вида, состоящая из n строк и m столбцов, заполненная числами. Матрицы обозначаются заглавными латинскими буквами. При необходимости размер записывается следующим образом: An×m .
Примеры матриц
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
2 | -1 | 0 | 0 |
-3 | 2 | 0 | 0 |
31 | -19 | 3 | -4 |
-23 | 14 | -2 | 3 |
Элементы матрицы
Элементы A обозначаются aij , где i — номер строки, в которой находится элемент, j — номер столбца.
Некоторые теоретические сведения
Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji
Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii
Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.
Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)
След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)
Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.
Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: A n
Обратная матрица A −1 — матрица, произведение которой на исходную матрицу A равно единичной матрице: A -1 ×A = A×A -1 = E
Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.
LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U
Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij
Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij
Умножение матриц An×k и Bk×m — матрица Cn×m, у которой элемент (cij) равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B: cij = ai1·b1j + ai2·b2j + . + aik·bkj
Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.
Источник
Определитель матрицы онлайн
Вычислить определитель матрицы онлайн можно различными способами с помощью нашего сервиса. Решение бесплатное с пошаговыми действиями и пояснениями.
Определитель матрицы – это сумма слагаемых всевозможных произведений элементов матрицы, взятых по одному из каждой строки и каждого столбца матрицы, при этом знак произведения определяется четностью перестановки.
Описание калькулятора определителя матрицы
Данный калькулятор поможет научиться находить определитель матрицы различными способами:
- используя метод Гаусса
- с помощью Правила треугольников
- по Правилу Саррюса
- с использованием формулы Лейбница
- методом Гаусса-Монтанте (алгоритм Барейса)
Наш сервис не только позволяет получить определитель матицы, но и предоставляет последовательность решения с комментариями и пояснениями в режиме онлайн, бесплатно. Так же калькулятор может быть полезен при проверке правильности выполненного самостоятельно решения.
Заполните поля для элементов матрицы и нажмите соответствующую кнопку.
- С помощью плюса и минуса выберите нужный размер матрицы. Если нужна неквадратная матрица, то просто ненужные ячейки оставьте пустыми.
- Внесите значение элементов матрицы в ячейки. Значения могут быть:
- целые числа: 7 , -3 , 0
- десятичные (конечные и периодические) дроби: 7/8 , 6.13 , -1.3(56) , 1.2e-4
- арифметические выражения: 1/2+3*(6-4) , (6-y)/x^3 , 2^0.5
- Нажмите на кнопку с названием нужной математической операции.
- Значения в результатах решения можно с помощью мышки перетаскивать на различные поля. Например, полученную матрицу можно перетащить на поле исходных данных, для дальнейшего решения.
Источник
Приведение матрицы к треугольному виду
Приведение матрицы к треугольному виду методом Гаусса и методом Барейса.
Ниже два калькулятора для приведения матриц к треугольному, или ступенчатому, виду. Первый использует для этого метод Гаусса, второй — метод Барейса. Описание методов и немного теории — под калькуляторами.
Приведение матрицы к треугольному виду (метод Гаусса)
Приведение матрицы к треугольному виду (метод Барейса)
Итак, для начала определимся с понятием треугольной, или ступенчатой матрицы:
Матрица имеет ступенчатый вид, если:
- Все нулевые строки матрицы стоят последними
- Первый ненулевой элемент строки всегда находится строго правее первого ненулевого элемента предыдущей строки
- Все элементы столбца под первым ненулевым элементом строки равны нулю (это впрочем следует из первых двух пунктов)
Пример ступенчатой матрицы:
1 0 2 5
0 3 0 0
0 0 0 4
Понятие треугольной матрицы более узкое, оно используется только для квадратных матриц (хотя я думаю, что это не строго), и формулируется проще: треугольная матрица — квадратная матрица, в которой все элементы ниже главной диагонали равны нулю. Строго говоря, это даже определение верхнетреугольной матрицы, но мы будем использовать его. Понятно, что такая верхнетреугольная матрица является также и ступенчатой.
Пример треугольной (верхнетреугольной) матрицы:
1 0 2 5
0 3 1 3
0 0 4 2
0 0 0 3
Кстати, определитель треугольной матрицы вычисляется простым перемножением ее диагональных элементов.
Чем же так интересны ступенчатые (и треугольные) матрицы, что к ним надо приводить все остальные? — спросите вы.
У них есть замечательной свойство, а именно, любую прямоугольную матрицу можно с помощью элементарных преобразований привести к ступенчатой форме.
Что же такое элементарные преобразования? — спросите вы.
Элементарными преобразованиями матрицы называют следующие операции:
- перестановка любых двух строк (столбцов) матрицы
- умножение любой строки (столбца) на призвольное, отличное от нуля, число
- сложение любой строки (столбца) с другой строкой (столбцом), умноженной (умноженным) на произвольное, отличное от нуля, число.
И что? — спросите вы.
А то, что элементарные преобразования матрицы сохраняют эквивалентность матриц. А если вспомнить, что системы линейных алгебраический уравнений (СЛАУ) записывают как раз в матричной форме, то это означает, что элементарные преобразования матрицы не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.
Приведя матрицу системы линейных уравнений AX=B к треугольной форме A’X = B’, то есть, с соответствующими преобразованиями столбца B, можно найти решение этой системы так называемым «обратным ходом».
Чтобы было понятно, используем треугольную матрицу выше и перепишем систему уравнений в более привычной форме (столбец B я придумал сам):
Понятно, что сначала мы найдем , потом, подставив его в предыдущее уравнение, найдем и так далее — двигаясь от последнего уравнения к первому. Это и есть обратный ход.
Алгоритм приведения матрицы к ступенчатой форме с помощью элементарных преобразований называют методом Гаусса. Метод Гаусса — классический метод решения систем линейных алгебраических уравнений. Также его еще называют Гауссовым исключением, так как это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к эквивалентной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.
Теперь про сам метод.
Собственно, как можно занулить переменную во втором уравнении? Вычтя из него первое, домноженное на коэффициент
Поясним на примере:
Зануляем во втором уравнении:
Во втором уравнении больше не содержится
Обобщенно алгоритм метода Гаусса можно представить следующим образом:
где N — число строк,
— i-тая строка,
— элемент, находящийся в i-той строке, j-том столбце
И все бы ничего, да и метод отличный, но. Дело все в делении на , присутствующем в формуле. Во-первых, если диагональный элемент будет равен нулю, то метод работать не будет. Во-вторых, в процессе вычисления будет накапливаться погрешность, и чем дальше, тем больше. Результат будет отличаться от точного.
Для уменьшения погрешности используют модификации метода Гаусса, которые основаны на том, что погрешность тем меньше, чем больше знаменатель дроби. Эти модификации — метод Гаусса с выбором максимума в столбце и метод Гаусса с выбором максимума по всей матрице. Как следует из названия, перед каждым шагом исключения переменной по столбцу (всей матрице) ищется элемент с максимальным значением и проводится перестановка строк (строк и столбцов), таким образом, чтобы он оказался на месте .
Но есть еще более радикальная модификация метода Гаусса, которая называется методом Барейса (Bareiss).
Как можно избавиться от деления? Например, умножив перед вычитанием строку на . Тогда вычитать надо будет строку , домноженную только на , без всякого деления.
.
Уже хорошо, но возникает проблема с ростом значений элементов матрицы в ходе вычисления.
Барейс предложил делить выражение выше на и показал, что если исходные элементы матрицы — целые числа, то результатом вычисления такого выражения тоже будет целое число. При этом принимается, что для нулевой строки .
Кстати, то, что в случае целочисленных элементов исходной матрицы алгоритм Барейса приводит к треугольной матрице с целочисленными элементами, то есть без накопления погрешности вычислений — довольно важное свойство с точки зрения машинной арифметики.
Алгоритм Барейса можно представить следующим образом:
Алгоритм, аналогично методу Гаусса, также можно улучшить поиском максимума по столбцу(всей матрице) и перестановкой соответствующих строк (строк и столбцов).
Источник