Калькулятор матриц разными способами

Содержание
  1. Калькулятор матриц
  2. Описание калькулятора матриц
  3. Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.
  4. Решить систему линейных уравнений матричным методом
  5. Ввод данных в калькулятор для решения систем линейных уравнений матричным методом
  6. Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом
  7. Решение задач с матрицами.
  8. Матричный калькулятор
  9. Ввод данных в матричный калькулятор
  10. Дополнительные возможности матричного калькулятора
  11. Теория. Матрицы
  12. Калькулятор матриц — действия с матрицами онлайн
  13. Как пользоваться калькулятором матриц
  14. Ввод данных и функционал
  15. Что умеет наш калькулятор матриц?
  16. Вычисление выражений с матрицами
  17. Из чего могут состоять выражения?
  18. Примеры корректных выражений
  19. Что такое матрица?
  20. Примеры матриц
  21. Элементы матрицы
  22. Некоторые теоретические сведения
  23. Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.
  24. Найти определитель (детерминант) матрицы
  25. Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц
  26. Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц
  27. Теория. Определитель (детерминант) матрицы.
  28. Вычисление определителя матрицы 2×2
  29. Правило треугольника для вычисления определителя матрицы 3×3
  30. Вычисление определителя матрицы произвольного размера

Калькулятор матриц

Калькулятор матриц для пошагового решения матриц с последовательностью решения, бесплатно в режиме онлайн. Для всех вычислений приводятся пояснения и ссылки на необходимую теорию.

Поле ручного ввода математического выражения для операций с матрицами

Матричный калькулятор позволяет выполнить умножение матриц, сложение и вычитание матриц, найти ранг, вычислить определитель, осуществить транспонирование матрицы, найти обратную матрицу, а также выполнить другие операции с матрицами.

Наш калькулятор поможет выполнить математические операции с матрицами или проверить уже выполненные самостоятельно вычисления.

Описание калькулятора матриц

Используя калькулятор матриц, вы сможете выполнить необходимые вычисления с матрицами, получив в результате требуемый ответ и подробную последовательность решения. Матричный калькулятор позволяет выполнять операции с одной матрицей или решать сложные выражения сразу с несколькими матрицами.

Заполните поля для элементов матрицы и нажмите соответствующую кнопку.

  • С помощью плюса и минуса выберите нужный размер матрицы. Если нужна неквадратная матрица, то просто ненужные ячейки оставьте пустыми.
  • Внесите значение элементов матрицы в ячейки. Значения могут быть:
    • целые числа: 7 , -3 , 0
    • десятичные (конечные и периодические) дроби: 7/8 , 6.13 , -1.3(56) , 1.2e-4
    • арифметические выражения: 1/2+3*(6-4) , (6-y)/x^3 , 2^0.5
  • Нажмите на кнопку с названием нужной математической операции или в ручном режиме введите математическое выражение в специальное поле.
  • Значения в результатах решения можно с помощью мышки перетаскивать на различные поля. Например, полученную матрицу можно перетащить на поле исходных данных, для дальнейшего решения.

Источник

Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) матричным методом (методом обратной матрицы), вы сможете очень просто и быстро найти решение системы.

Читайте также:  Способы обогрева жилых помещений

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений матричным методом (методом обратной матрицы), вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений матричным методом

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений матричным методом

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом

  • Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Источник

Решение задач с матрицами.

Матричный калькулятор

Очистить Размер ×
Транспонировать Умножить на
Найти определитель Возвести в степень
Найти ранг Найти обратную

Очистить Размер ×
Транспонировать Умножить на
Найти определитель Возвести в степень
Найти ранг Найти обратную

Ввод данных в матричный калькулятор

В матричный калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности матричного калькулятора

  • Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.

Теория. Матрицы

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Калькулятор матриц — действия с матрицами онлайн

С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji

Как пользоваться калькулятором матриц

  1. Выберите матрицу (или матрицы) с помощью переключателей ( )
  2. Укажите размер с помощью выпадающих списков под матрицей ( × )
  3. Заполните элементы (нулевые элементы можно не заполнять.)
  4. Выберите в выпадающем списке требуемую функцию и, если требуется, введите дополнительные параметры.
  5. Нажмите кнопку .
  6. Если вывод чисел не устраивает, просто поменяйте его — доступны три варианта представления: правильные дроби (2
Читайте также:  Решение простых задач основа успешного усвоения способов решения составных задач

Ввод данных и функционал

  • В качестве элементов используются обыкновенные правильные дроби ( 1/2 , 29/7 , -1/125 ), десятичные дроби ( 12 , -0.01 , 3.14 ), а также числа в экспоненциальной форме ( 2.5e3 , 1e-2 ).
  • Длина вводимых чисел ничем не ограничена, вводите хоть 1000 цифр, правда, возможно, придётся подождать, пока будут идти вычисления!
  • Используйте для работы одну или две матрицы (чтобы выполнять операции с двумя матрицами, передвиньте переключатель второй матрицы).
  • Вставляйте результат в A или B с помощью кнопок «Вставить в A» и «Вставить в B».
  • Перетаскивайте (drag-and-drop) матрицы из результата в A или B.
  • Используйте стрелки ( ← , ↑ , → , ↓ ) для перемещения по элементам

Что умеет наш калькулятор матриц?

Вычисление выражений с матрицами

Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.

Из чего могут состоять выражения?

  • Целые и дробные числа
  • Матрицы A, B
  • Знаки арифметических действий: + — * /
  • Круглые скобки для изменения приоритета операций: ( )
  • Транспонирование: ^T
  • Возведение в целую степень: ^

Примеры корректных выражений

  • Cложение двух матриц: A+B , (A)+(B) , ((A) + B)
  • Возведение линейной комбинации матриц в степень: (3A — 0.5B)^5
  • Произведение транспонированной матрицы на исходную: A^TA
  • Обратная матрица в квадрате для B: B^-2

Что такое матрица?

Матрицей размера n×m называется прямоугольная таблица специального вида, состоящая из n строк и m столбцов, заполненная числами. Матрицы обозначаются заглавными латинскими буквами. При необходимости размер записывается следующим образом: An×m .

Примеры матриц

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
2 -1 0 0
-3 2 0 0
31 -19 3 -4
-23 14 -2 3

Элементы матрицы

Элементы A обозначаются aij , где i — номер строки, в которой находится элемент, j — номер столбца.

Некоторые теоретические сведения

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji

Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii

Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.

Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)

След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)

Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.

Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: A n

Читайте также:  Все способы борьбы с целлюлитом

Обратная матрица A −1 — матрица, произведение которой на исходную матрицу A равно единичной матрице: A -1 ×A = A×A -1 = E

Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.

LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U

Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij

Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij

Умножение матриц An×k и Bk×m — матрица Cn×m, у которой элемент (cij) равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B: cij = ai1·b1j + ai2·b2j + . + aik·bkj

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Источник

Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.

Используя этот онлайн калькулятор для вычисления определителя (детерминанта) матриц, вы сможете очень просто и быстро найти определитель (детерминант) матрицы.

Воспользовавшись онлайн калькулятором для вычисления определителя (детерминанта) матриц, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на транспонирование матриц, а также закрепить пройденный материал.

Найти определитель (детерминант) матрицы

Введите значения Матрицы:

Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц

  • Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.

Теория. Определитель (детерминант) матрицы.

Вычисление определителя матрицы 2×2

Для матрицы 2×2 значение определителя равно разности произведений элементов главной и побочной диагоналей:

∆ =
a 11 a 12
a 21 a 22
= a 11· a 22 — a 12· a 21

Правило треугольника для вычисления определителя матрицы 3×3

Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

+

∆ =
a 11 a 12 a 13
a 21 a 22 a 23
a 31 a 32 a 33
=

Вычисление определителя матрицы произвольного размера

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Источник

Оцените статью
Разные способы