iSopromat.ru
Рассмотрим три существующих способа задания движения материальной точки: координатный, векторный и естественный.
Чтобы иметь возможность определить параметры движения точки необходимо задать закон ее движения.
В зависимости от известных величин и поставленной задачи могут быть использованы следующие способы задания движения точки: векторный, координатный и естественный.
Векторный
При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета.
Координатный
При координатном способе задания движения задаются координаты точки как функции времени:
Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t. Чтобы записать ее уравнение в явной форме, надо исключить из них t.
Естественный
При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t). Этим способом удобно пользоваться, если траектория точки заранее известна.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Источник
Кинематика
Кинематика – раздел механики, в котором изучаются движение материальных тел с геометрической точки зрения, без учета массы и действующих на них сил. Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный. Траектория точки – непрерывная кривая, которую описывает точка при своем движении.
Естественный сп . указывается траектория точки, закон ее движения по этой траектории, начало и направление отсчета дуговой координаты: s=f(t) – закон движения точки. При прямолинейном движении: х= f(t).
Координатный сп . положение точки в пространстве определяется тремя координатами, изменения которых определяют закон движения точки: x=f1(t), y=f2(t), z=f3(t).
Если движение в плоскости, то два уравнения движения. Уравнения движения описывают уравнение траектории в параметрической форме. Исключив из уравнений параметр t , получаем уравнение траектории в обычном виде: f(x,y)=0 (для плоск-ти).
Векторный сп . положение точки определяется ее радиус-вектором , проведенным из какого-либо центра. Кривая, которая вычерчивается концом какого-либо вектора, назыв. годографом этого вектора. Т.е. траектория – годограф радиус-вектора. Связь между координатным и векторным способами: ,
( – орты – единичные вектора, сонаправленные с какой-либо осью)
модуль , направляющие косинусы: и т.д.
Переход от координатного способа к естественному: .
Скорость точки . Вектор ск-сти: – первая производная от радиус-вектора по времени (точка обозначает производную по времени); . Проекции скорости: , , . Модуль скорости:
, направляющие косинусы: и т.д. Если модуль скорости не изменяется с течением времени, то движение называется равномерным. При естественном сп.: – модуль скорости, вектор скорости: , – орт касательной, т.е. скорость всегда направлена по касательной к траектории. Если v>0, то движение происходит в сторону положительного отсчета дуговой координаты и наоборот. Движение в полярной системе координат: r=r(t) – полярный радиус, j = j ( t) – угол. Проекции скорости на радиальное направление , поперечное направление , модуль скорости ; x=rcos j , y=rsin j .
Ускорение точки . , [ м/сек 2 ]. Проекции уск.-я: и т.д. Модуль уск.-я: , направляющ. косинусы: , и т.д.
При задании движения в полярных координатах: проекции ускорения на радиальное направление , поперечное направление , модуль ускорения . При естественным сп. задания движения полное ускорение раскладывают на нормальное и касательное (тангенциальное) ускорения: . Модуль нормального ускорения: , r – радиус кривизны траектории, нормальное ускорение направлено по нормали к траектории ( ^ к касательной) всегда к центру кривизны, т.е. в сторону вогнутости. Нормальное ускорение характеризует изменение скорости по направлению. Модуль касательного ускорения , направлено по касательной к траектории, либо в сторону скорости, либо в обратную. Касательное ускорение характеризует изменение скорости по величине. При ускоренном движ-ии направление касат. уск. и скорости совпадают, при замедленном – противоположно. ^ , Þ . Вектор ускорения лежит в соприкасающейся плоскости Þ его проекция на бинормаль равна 0 (главная нормаль лежит в соприкасающейся плоскости, т.е. в плоскости плоской кривой, бинормаль – ^ к главной нормали и касательной). Частные случаи движения точки : 1) Прямолинейное: радиус кривизны r = ¥ (бесконечно большой) Þ а n =0, a=a t . 2) Равномерное криволинейное движ-ие: v=const Þ a t =0, a=an. Уск. появляется только за счет изменения направления скорости. Закон движ-ия: s=s0+v × t, при s0=0 v=s/t.
3) Равномерное прямолинейное движ-ие: а= a t =an=0. Единственное движ-ие, где а=0.
4) Равнопеременное криволинейное движ-ие: a t =const , v=v0+a t × t, . При равноуск. движении знаки у a t и v одинаковы, при равнозамедленном – разные.
Простейшие движения твердого тела: поступательное и вращение вокруг неподвижной оси. Поступательное движение тела – такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельное самой себе. При поступат. движ. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения. Вращательное движение тела – такое движение твердого тела, при котором все точки, принадлежащие некоторой прямой, неизменно связанной с телом, остаются неподвижными. Эта прямая называется осью вращения тела. При этом движении все точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на оси вращения. Урав-ние (закон) вращательного движ.: j = f(t) – угол поворота тела в радианах. (1 рад= 180 о / p =57,3 о ).
Угловая ск-сть : , [ рад/с ] – определяет быстроту изменения угла поворота.
Вектор угловой скорости тела, совершающего вращение вокруг неподвижной оси, направлен вдоль оси вращения так, что если смотреть ему навстречу вращение будет против час. стрелке. » n»– число оборотов в мин. [об/мин], 1об=2 p рад, . Угловое ускорение тела: , [ рад/с 2 ]. Вектор углового ускорения также направлен вдоль оси вращения. При ускоренном движении совпадает по направлению с угловой скоростью и противоположно при замедленном вращении.
Частные случаи вращения тела: 1) Равномерное вращение: w = const, j = w t, w = j /t,
2) Равнопеременное вращение: w = w 0 + e t; , здесь начальный угол j 0 =0.
Скорости и ускорения точек вращающегося тела. – скорость любой точки твердого тела, вращающегося вокруг неподвижной оси, равна векторному произведению вектора угловой скорости тела на радиус–вектор этой точки. Модуль векторного произведения: v= w × r × sin( a )= w × (CM) , (СМ) – расстояние от точки М до оси вращения. Направлен вектор скорости по касательной к окружности, по которой перемещается точка М, в сторону вращения.
w x , w y , w z – проекции вектора угловой скорости. Проекция вращательной (окружной) скорости: vx= w y z – w z y; vy= w z x – w x z; vz= w x y – w y x. Если ось вращения совпадает с осью z, то vx= – w y; vy= w x. Ускорение : . Вращательное ускорение , модуль вращат. уск. а вр = e × r × sin a , направлено по касательной к траектории точки, т.е. параллельно скорости. Центростремительное (осестремительное) ускорение , а ц = w 2 × R, направлено по радиусу к оси (центру) вращения. Модуль полного уск.: . Угол, между векторами полного и центростремит-ного ускорений: .
Источник
Ключи к тестам по «Технической механике»
КОМПЛЕКТ ТЕСТОВ
для оценки результатов освоения учебной дисциплины
основной профессиональной образовательной программы СПО
Инструкция по выполнению работы
Уровень А включает 25 заданий с выбором ответа. К каждому заданию дается четыре ответа, из которых только один правильный.
Уровень В состоит из 50 заданий с кратким ответом или выбором одного правильного ответа. К каждому заданию запишите краткий ответ на вопрос, окончание предложения или пропущенные слова.
Уровня С включает 25 заданий. Для выполнения заданий необходимо написать развернутый ответ в произвольной форме.
За каждый правильный ответ в зависимости от сложности задания дается один или более баллов. Баллы, полученные вами за все выполненные задания, суммируются.
Уровень — Уровень А
А1.Что изучает кинематика?
А) Движение тела под действием приложенных к нему сил.
Б) Виды равновесия тела.
В) Движение тела без учета действующих на него сил.
Г) Способы взаимодействия тел между собой.
А2.Какого способа не существует для задания движения точки (тела)?
А) Способность конструкции выдерживать заданную нагрузку не разрушаясь и без появления остаточных деформаций.
Б) Способность конструкции сопротивляться упругим деформациям.
В) Способность конструкции сохранять первоначальную форму упругого равновесия.
Г) Способность конструкции не накапливать остаточные деформации.
А4.Как называется график зависимости между растягивающей силой и соответствующим удлинением образца материала?
А5.Какого вида расчетов не существует в «сопротивлении материалов»?
А) Проектного расчета
Б) Расчета на допустимую нагрузку
В) Проверочного расчета
Г) Математического расчета
А6.Как называется брус, работающий на изгиб?
А7.Какого вида изгиба не существует?
А8.Для наиболее наглядного представления о характере изменения внутренних силовых
факторов при нагрузках на брус принято строить…
А9.Что называется силой?
А) Давление одного тела на другое.
Б) Мера воздействия одного тела на другое.
В ) Величина взаимодействия между телами.
Г) Мера взаимосвязи между телами (объектами).
А10.Назовите единицу измерения силы?
А11. Какой прибор служит для измерения силы?
А12.В какой точке диаграммы растяжения на образце образуется шейка?
А13.Равнодействующей двух сил приложенных в одной точке будет…
а) сторона параллелограмма
б) диагональ параллелограмма
в) высота треугольника
А14.Как направлена реакция связи гладкая опора?
а) параллельно опоре
б) под углом к опоре
в) перпендикулярно опоре
А15.Допускаемое напряжение это ____________ напряжение при котором материал должен нормально работать.
А16.Две силы считаются уравновешенными, если они находятся на одной прямой, _________________ .
а) равны по модулю и противоположно направлены
б) противоположно направлены
в) направлены в одну сторону
г) обе равны нулю
А17.Как называется тело у которого одно измерение размера много меньше двух других?
А18.Плоская система сходящихся сил находится в равновесии, если алгебраические суммы проекций всех сил на оси ОХ и ОУ равны __________________ .
в) минус единице
г) имеют переменное значение
А19.Систему из двух параллельных сил равных по значению и противоположно направленных называют ________________ .
в) удвоенными силами
г) направленными силами
А20.Чему равен момент пары сил?
а) произведению двух сил
б) расстоянию между силами
в) произведению модуля силы на расстояние между силами
А21.Главный вектор отличается от равнодействующей плоской системы произвольно расположенных сил _____________ .
б) ничем, это одно и то же
А22.Можно ли суммировать моменты сил приложенные к телу в одной плоскости?
г) можно, если они имеют одинаковый знак
А23.Может ли быть момент силы отрицательным числом?
б) всегда положителен
г) нет, т.к. равен нулю
А24.В каких случаях проекция вектора равна по значению самому вектору?
а) если вектор перпендикулярен оси
б) если вектор расположен под углом к оси
в) если вектор параллелен оси
г) если вектор и ось составляют острый угол
А25.Может ли проекция вектора иметь отрицательное значение?
б) может, если вектор равен единице
г) проекция всегда положительна по определению
Уровень — Уровень В
В1.Как называются тела, ограничивающие перемещение других тел?
В2.При каких условиях равнодействующая сила равна нулю?
А) если вектор равнодействующей силы вписывается в окружность
Б) если вектор равнодействующей силы соединяет начало первого силового вектора с концом последнего
В) если многоугольник составляющих сил является замкнутым
Г) если можно составить из всех составляющих сил квадрат
В3.Силы, с которыми два тела действуют друг на друга, всегда равны, находятся на одной прямой и _________________ .
А) направлены в одну сторону
Б) направлены в противоположные стороны
В) направлены под углом друг к другу
Г) смотрят друг на друга
В4.Установить вид нагружения в сечении I–I
Б) брус растянут
В5.Как называется и обозначается напряжение, при котором деформации растут при постоянной нагрузке?
А) Предел текучести, sТ
б) Предел прочности, sВ
в) Допускаемое напряжение, [s]
г) Предел пропорциональности, sпц
В6.В каких единицах измеряется механическое напряжение в системе единиц СИ?
В7.Прямой брус нагружен силой F. Какую деформацию получил брус, если после снятия нагрузки форма бруса восстановилась до исходного состояния?
L0 |
F |
В8.Закон вращательного движения тела φ = 0,68t 3 + t . Определить ω в момент t = 1 с.
В9.Какие ускорения возникнут в точке А при равномерном вращении колеса?
В10.Закон вращательного движения тела φ = 0,25t 3 + 4t . Определить вид движения.
В11.Выбрать соответствующий кинематический график движения, если закон движения φ=1,3t 2 +t
В12.По графику скоростей определить вид движения на третьем участке
а)Равномерное
В13.По приведенным кинематическим графикам определить соответствующий закон движения точки.
Б)
В)
Г)
В14.В каком случае для определения положения центра тяжести необходимо определить две координаты расчетным путем?
а) 1
В15.Что произойдет с координатами хС и уС, если увеличить величину основания треугольника до 90 мм?
а) хС и уС не изменятся
В16.Определить сумму моментов сил относительно 0z, если F1=2 Н; F2=13 Н, а сторона куба 0,5 м
В) 0
В17.Какие уравнения равновесия нужно использовать, чтобы найти XA?
В18. Тело равномерно вращается вокруг неподвижной оси. Чему равны главный вектор и главный момент системы сил?
В19.Какое уравнение равновесия можно использовать, чтобы сразу найти MA, зная F, q, α.
В20.Какие силы из заданной системы образуют пару сил? Если F1=F2=F3=F5
а) F4 и F6
В21.Как изменится момент пары сил при повороте сил на угол равный 30º?
F=10 Н; а=5 м
А) уменьшится в 1,15 раза
Б) увеличится в 1,15 раза
В) увеличится в 1,5 раза
Г) не изменится
В22.. Тело находится в равновесии. Определить величину момента пары М4, если
М1=15 Н·м; М2=8 Н·м; М3=12 Н·м; М4=?
М1 |
М2 |
М3М3 3 |
М4 ? |
а) 14 Н·м
В23.Какие из изображенных пар сил эквиваленты?
В24.Как направлен вектор равнодействующей силы, если известно, что его проекции Fх=15 Н; Fу= -20 Н?
а) 1
В25.Выбрать выражение для расчета проекции силы F1 на ось 0у.
а) F1·cos30º
В26.При равномерном и прямолинейном движении тела главный вектор равен _________________ .
Б) главному моменту
В2 7.Где находится центр тяжести у симметричных фигур?
А) на границе тела
Б) в центре координат
В) на оси симметрии
Г) слева от оси симметрии
В28.Изменится ли положение центра тяжести тела, если его повернуть на 90 градусов?
а) да
в) зависит от массы тела
г)зависит от габаритных размеров тела
В29.Нормальная составляющая ускорения точки an характеризует изменение скорости по______________________.
В30.Движениеточки считается равномерным, если постоянна её__________________.
В31.Угловая частота вращения измеряется в ________________ .
В32.Упругими деформациями называются деформации, которые полностью исчезают при снятии ________________.
В33.В отличии от внешних сил, силы упругости это_________________силы.
В34.Скольковнутренних силовых факторов влияет на деформацию тела? ________________________.
В35.Какой силовой фактор вызывает растяжение бруса? _______________________.
В36.Как распределены напряжения по сечению при растяжении и сжатии?
В37.График распределения внутренних сил по оси бруса называется _________________.
В38.Деформации, которые полностью не исчезают при снятии нагрузки, называют
В39.Метод сечения заключается в мысленном рассечении тела _____________ и рассмотрении равновесия любой из отсеченных частей.
В40.Модуль упругости характеризует ___________________ материала.
В41.Две силы F1=30Н и F2=40Н приложены к телу под углом 90° друг другу. Чему равна их равнодействующая?
В42.Момент силы считается отрицательным, когда тело под действием силы вращается __________________ часовой стрелки.
В43.Движение твердого тела при котором всякая прямая линия на теле при движении остается параллельной своему первоначальному положению называтся _______________.
В44.В задачах статики для абсолютно твердых тел нагрузку ________________ можно заменить сосредоточенной.
В45.Изменение размеров и формы тела под действием внешних сил называется _____________.
В46.Часть теоретической механики, изучающая условия, при которых тело находится в равновесии, называется __________________.
В47. Если вектор силы находится под углом α к оси, то _________силы на ось равна произведению силы на Соs α.
В48.Произведение модуля ___________ на её плечо, называется моментом пары.
В49.Если главный ___________ и главный момент равны нулю, то система сил
находится в равновесии.
В50. Геометрическая точка, которая может располагаться в самом теле или вне него называется _____________тяжести.
Уровень — Уровень С
С1. Составлено уравнение для расчета реакции в опоре А. Какого слагаемого в уравнении не хватает?
С2.Груз находится в равновесии. Указать, какой из силовых треугольников для шарнира B построен верно.
в) 3
С3.Точка М движется равномерно по кривой радиуса r. Выбрать направление силы инерции.
а) А
С4.По графику скоростей точки определить путь, пройденный за время движения.
С5.Определить координаты центра тяжести фигуры 2:
а) 2; 1
А)
Б)
В)
плоскости у0х
Г) плоскости у0z
С7.Какой вектор силового многоугольника является равнодействующей силой?
в) F5
С8.Какие из сил данной системы можно назвать уравновешенными?
F2 |
F1b F2 |
F3 |
F4 |
F5 |
F6 |
б) F2 и F5
г) Уравновешенных сил нет
С9.Автомобиль движется по круглому арочному мосту r=50 м согласно уравнению S=10t. Определить полное ускорение автомобиля через 3 с движения
С10.Составляющие главного вектора R и главного момента M внутренних
сил по координатным осям X; Y; Z называют ____________ .
а) нормальными и касательными напряжениями;
б) внутренними силовыми факторами
в) напряженным состоянием в точке;
г) тензором напряжений
С11.Пластичностью называется свойство материала_______________ .
а) сопротивляться проникновению в него другого более твердого тела;
б) сохранять некоторую часть деформации после снятия нагрузки;
в) восстанавливать свою форму и размеры после снятия нагрузки;
г) сопротивляться разрушению.
С12.Нагрузки, числовое значение, направление и место приложения которых остаются постоянными или
меняются медленно и незначительно называются __________
С13. К передачам трением относятся________________
а) фрикционные, ременные
б) зубчатые, червячные
в) ременные, цепные
С14. Основные достоинства фрикционной передачи ______________.
а) бесшумность и плавность работы
б) постоянство передаточного отношения
в) нагрузка на опоры
г) низкая стоимость и доступность материала
С15. Центр тяжести прямоугольника находится на пересечении _______________ .
С16 Ускорение точки в криволинейном движении раскладывается на ____________ .
а) поступательное и вращательное
б) нормальное и касательное
в) прямолинейное и криволинейное
С17.При поступательном движении все точки твердого тела имеют ___________ .
а) разные траектории, скорости и ускорения
б) переменные траектории, скорости и ускорения
в) одинаковые траектории, скорости и ускорения
С18.Установите соответствие единиц измерения.
С19.Нагрузки, которые многократно меняют свое значение или знак и значение, называются______________ .
С20.Нагрузки, которые меняют свое значение в короткий промежуток времени, называют __________________.
С21.Если в поперечном сечении возникает только продольная сила N, то имеем деформацию _______________ .
а) сжатие, растяжение
С22.Если в поперечном сечении возникает только один внутренний силовой фактор — поперечная сила Q, то это деформация _______________ .
а) сжатие, растяжение
С23 Если в поперечном сечении возникает только один внутренний силовой фактор — крутящий момент, то это деформация ______________
С24.Внутренняя сила, отнесенная к единице площади сечения, называется _______________ .
в) изгибающий момент
С25.Допускаемое напряжение это _____________ напряжение, при котором материал должен нормально работать
Ключи к тестам по «Технической механике»
Источник