Какими способами можно выразить содержание растворенного вещества
§7.7 Концентрация раствора.
На практике часто приходится иметь дело с растворами, имеющими строго заданное содержание в них растворенного вещества . Приведем несколько примеров.
Во-первых, это приготовление различных лекарственных растворов. Если в аптеке случайно произойдет ошибка с количеством лекарства в его растворе, то последствия могут быть самыми плачевными.
Во-вторых, многие химические реакции проводят в растворах. И здесь ошибки могут приводить к печальным результатам. Например, если фотограф ошибется при растворении проявителя, то фотографии либо не проявятся, либо будут испорчены. Другой пример: если залить в аккумулятор раствор, в котором содержание серной кислоты будет меньше или больше требуемого, то аккумулятор либо не будет работать, либо выйдет из строя.
Еще один пример из лабораторной практики. Для получения бромистого калия (KBr) взяли два раствора: HBr и KOH. Из-за ошибки при приготовлении растворов гидроксид калия KOH добавили в воду в гораздо большем количестве, чем это требовалось для реакции обмена:
H Br + K OH = K Br + H 2 O
В результате полученный водный раствор KBr оказался безнадежно испорченным примесью непрореагировавшего, очень едкого гидроксида калия KOH.
Во всех перечисленных случаях было не учтено или нарушено заданное содержание вещества в растворе. Давайте разберемся в том, как правильно выражать это содержание и как правильно готовить раствор, если содержание вещества в растворе задано.
Один из способов выражения количества вещества в растворе – задание МАССОВОЙ ДОЛИ РАСТВОРЕННОГО ВЕЩЕСТВА .
Массовая доля растворенного вещества – это отношение массы растворенного вещества m 1 к общей массе раствора m, выраженное в процентах.
Пример 1. Для лечения гипертонической болезни (повышенное давление) применяют 25%-ный раствор сульфата магния MgSO 4 . Это означает, что в 100 г такого раствора содержится 25 г MgSO 4 . Здесь выделено слово “раствора”. Действительно, если мы взвесим 25 г сульфата магния и просто растворим в 100 г воды, то нужного нам раствора не получим.
Как же приготовить 25%-ный раствор? Надо взвесить на весах 25 г безводного сульфата магния и отмерить мензуркой 75 мл воды (либо взвесить на весах 75 г воды, что одно и то же). Затем сульфат магния надо высыпать в воду и перемешать до полного растворения. Получится 100 г раствора (25 г + 75 г = 100 г), в котором массовая доля сульфата магния составляет точно 25 %.
** Если для взвешивания 25 г MgSO 4 не найдется безводной соли, а в наличии окажется только более распространенный кристаллогидрат MgSO 4 . 7H 2 O, то необходимо взять больше соли. Предварительно следует рассчитать, в каком количестве MgSO 4 . 7H 2 O содержится 25 г MgSO 4 и взвесить именно это рассчитанное количество MgSO 4 ·7H 2 O. Соответственно, на приготовление такого раствора пойдет меньше воды, потому что часть ее уже имеется в кристаллогидрате.
Пример 2. Для заливки в новый автомобильный аккумулятор нужен 36%-ный раствор серной кислоты. Это означает, что в 100 г такого раствора содержится 36 г серной кислоты и 64 г воды (100 г — 36 г = 64 г.). Массовая доля серной кислоты в таком растворе составляет 36%.
Разумеется, 100 г раствора – слишком маленькое количество для автомобильного аккумулятора, поэтому приготовим 10 кг раствора. Для этого увеличим все цифры в 100 раз. Итак, нам потребуется взвесить на весах (36 г х 100) = 3600 г или 3,6 кг крепкой (безводной) серной кислоты и отмерить (64 г х 100) = 6400 г или 6,4 л дистиллированной воды.
Осторожно смешаем серную кислоту с водой (происходит сильный разогрев). Получим 10 кг 36%-ного раствора серной кислоты, который после охлаждения можно заливать в аккумулятор.
** Водитель, который не очень усердно изучал в школе химию, может легко ошибиться, взяв вместо 3,6 кг серной кислоты 3,6 л серной кислоты. В этом случае аккумулятор будет испорчен, потому что количество H 2 SO 4 в растворе окажется намного больше требуемого.
Дело в том, что серная кислота – довольно «тяжелая» жидкость, ее плотность 1,84 кг/л. Можно подсчитать, какой объем займет серная кислота массой 3,6 кг:
1 л H2 SO 4 весит 1,84 кг (плотность серной кислоты)
х л H2 SO 4 весят 3,6 кг
Отсюда х = 1 л . 3,6 кг/1,84 кг = 1,956 л – такой объем (меньше двух литров!) занимает концентрированная кислота весом 3,6 кг.
Массовую долю растворенного вещества называют также ПРОЦЕНТНОЙ КОНЦЕНТРАЦИЕЙ раствора.
Концентрация – это относительное количество растворенного вещества в растворе.
Помимо процентной концентрации, часто удобно пользоваться МОЛЯРНОЙ КОНЦЕНТРАЦИЕЙ .
Молярная концентрация С – это отношение количества растворенного вещества v (в молях) к объему раствора V в литрах.
Единица молярной концентрации – моль/л. Зная число молей вещества в 1 л раствора, легко отмерить нужное количество молей для реакции с помощью подходящей мерной посуды.
В качестве примера рассмотрим получение нерастворимого в воде хлорида серебра (AgCl) с помощью реакции обмена:
AgNO 3 + NaCl = Ag Cl (осадок) + Na NO 3
Кстати, не нужно запоминать, какие соли растворимы, а какие нерастворимы в воде. Для этого существует таблица растворимости (теперь она есть и в меню левого окна).
Допустим, в лаборатории имеется раствор AgNO 3 , концентрация которого 1 моль/л. Это означает, что в 1 л такого раствора содержится 1 моль нитрата серебра.
По уравнению реакции на 1 моль AgNO 3 нужен 1 моль NaCl. Следовательно, если мы смешаем одинаковые объемы растворов AgNO 3 и NaCl одинаковой концентрации 1 моль/л, то реакция пройдет до конца и в реакционной колбе окажется только раствор нитрата натрия (NaNO 3 ) в воде, а на дно сосуда выпадет осадок хлорида серебра AgCl. При этом исходных соединений в сосуде не останется.
Но как приготовить для реакции нужный раствор NaCl ? Для этого существуют специальные мерные колбы (рис. 7-4).
Рис. 7-4. Последовательность приготовления молярного раствора хлорида натрия (1моль/л NaCl): а) берут мерную колбу емкостью 1 л; б) помещают в колбу навеску кристаллического NaCl. в) в колбу добавляют немного дистиллированной воды, растворяют кристаллы и доливают раствор водой до метки 1 л, после чего тщательно перемешивают.
Мерная колба представляет собой сосуд с тонкой шейкой, на которой по стеклу нанесена кольцеобразная метка. Если заполнить мерную колбу жидкостью до метки, то ее объем составит ровно 1 л. Возьмем такую колбу и приступим к приготовлению нужного нам раствора NaCl.
Молекулярный вес NaCl составляет (23 + 35,5) = 58,5. Следовательно, молярная масса NaCl (масса 1 моль) равна 58,5 г. Взвесим это количество NaCl на весах и поместим кристаллы в мерную колбу. Затем добавим немного воды и растворим кристаллы, покачивая колбу. Когда вся соль растворится, дольем раствор водой до метки. Мерные колбы делают таким образом, что объем раствора достигает точно 1 л, когда водный мениск (уровень воды, слегка изогнутый силами поверхностного натяжения) касается метки своей нижней частью. После этого раствор аккуратно перемешаем.
** Молярную концентрацию (или МОЛЯРНОСТЬ растворов) принято обозначать буквой М. Например, раствор концентрации 1 М содержит 1 моль вещества на литр раствора. Такой раствор называют МОЛЯРНЫМ . Раствор концентрации 0,1 М содержит 0,1 моль вещества на литр раствора и называется ДЕЦИМОЛЯРНЫМ . Растворы концентрации 0,01 М (или 0,01 моль на литр) иногда называют САНТИМОЛЯРНЫМИ .
Итак, мы приготовили раствор NaCl , концентрация которого составляет 1 моль/л, то есть одномолярный или просто молярный раствор.
Молярные концентрации в общем виде иногда обозначают следующим образом:
C NaCl = 1 моль/л
При смешивании любых равных объемов молярных растворов AgNO 3 и NaCl всегда будет получаться только раствор NaNO 3 в воде и осадок AgCl , не содержащие примеси ни одного из исходных реагентов. Отфильтровав осадок и промыв его водой, мы получим чистую соль AgCl (она в воде практически не растворяется). Упарив отфильтрованный раствор, мы получим только чистый нитрат натрия NaNO 3 . Это не удивительно, потому что смешивая равные объемы растворов, мы берем одинаковое количество молей (или частей моля) реагирующих веществ. В них содержится одинаковое количество молекул AgNO 3 и NaCl , которые реагируют между собой без остатка.
На фотографии слева показан опыт, который мы обсуждаем. Видно, как при смешивании растворов исходных солей выпадает белый осадок AgCl.
Если бы мы взяли не молярные, а, например, 10%-ные растворы AgNO 3 и NaCl (одинаковые объемы), то в них бы содержалось разное число молекул этих веществ и одна из этих солей не израсходовалась бы полностью и осталась в растворе. Какая же из двух солей оказалась бы в избытке? Та, число молей которой больше. Это будет NaCl – соль с меньшим молекулярным весом, поскольку в одинаковой массе солей число более легких молекул (и молей) NaCl оказывается б о льшим.
Каждый способ выражения концентрации раствора удобен в зависимости от цели, которую преследует химик или технолог. Процентные концентрации более удобны в технике, медицине, экологии. Молярные концентрации чаще встречаются в лабораторной практике.
Источник
Растворы. Способы выражения концентрации растворов
Материалы портала onx.distant.ru
Растворы. Способы выражения концентрации растворов
Способы выражения концентрации растворов
Существуют различные способы выражения концентрации растворов.
Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:
Массовый процент представляет собой массовую долю, умноженную на 100:
ω(Х) = m(Х)/m · 100% (0%
где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.
Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.
Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:
Мольный процент представляет мольную долю, умноженную на 100:
Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:
φ(Х) = V(Х)/V (0
Объёмный процент представляет собой объёмную долю, умноженную на 100.
Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:
Cм(Х) = n(Х)/V (6)
Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.
Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:
Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.
Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см 3 раствора:
T(Х) = m(Х)/V (8)
где m(X) – масса растворённого вещества X, V – объём раствора в мл.
Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:
μ(Х) = n(Х)/mр-ля (9)
где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.
Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.
Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:
Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.
Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:
Результаты расчётов приведены в табл. 2.
Таблица 1. К определению молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2 M Na2SO4 | ? | 6 н FeCl3 | ? |
1,5 M Fe2(SO4)3 | ? | 0,1 н Ва(ОН)2 | ? | |
Реакции окисления-восстановления | 0,05 М KMnO4 в кислой среде | ? | 0,03 М KMnO4 в нейтральной среде | ? |
Значения молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2M Ma2SO4 | 0,4н | 6н FeCl3 | 2М |
1,5M Fe2(SO4)3 | 9н | 0,1н Ва(ОН)2 | 0,05М | |
Реакции окисления-восстановления | 0,05М KMnO4 в кислой среде | 0,25н | 0,03М KMnO4 в нейтральной среде | 0,01М |
Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:
Примеры решения задач
Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см 3 .
Решение.
Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.
Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.
Молярность раствора См = 521,2/98 = 5,32 М.
Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.
Титр раствора Т = 521,2/1000 = 0,5212 г/см 3 .
Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.
Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.
Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.
Количество вещества воды: n = 781,8/18 = 43,43 моль.
Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.
Мольное отношение равно 5,32/43,43 = 0,1225.
Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см 3 ), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.
Решение.
2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.
Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.
Объём раствора кислоты V = 14/1,611 = 8,69 мл.
Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см 3 .
Решение.
Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.
Масса раствора m = 5000 + 75,9 = 5075,9 г.
Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.
Количество вещества NH3 равно 100/22,4 = 4,46 моль.
Объём раствора V = 5,0759/0,992 = 5,12 л.
Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.
Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?
Решение.
Переводим молярность в нормальность:
Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.
Задача 5. Какой объем, мл 2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?
Плотности растворов NaCl:
С, мас.% | 2 | 6 | 7 | 14 |
ρ, г/см 3 | 2,012 | 1,041 | 1,049 | 1,101 |
Решение.
Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:
Определяем массу раствора: m = 150·1,0426 = 156,39 г.
Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.
Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):
Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.
Задачи для самостоятельного решения
3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.
3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.
3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.
3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.
3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.
3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?
0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.
3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.
255 мл; 2 н; 0,203 г/мл.
3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.
0,035; 0,0177; 1:55,6.
3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.
74,28 г; 3,05 М; 0,179 г/мл.
3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.
Источник