Методы повышения точности измерений
Анализ причин появления погрешностей измерений, выбор способов их обнаружения и уменьшения являются основными этапами процесса измерений. Погрешности измерений, принято делить на систематические и случайные. В процессе измерений систематические и случайные погрешности проявляются совместно и образуют нестационарный случайный процесс. Деление погрешностей на систематические и случайные является удобным приемом для их анализа и разработки методов уменьшения их влияния на результат измерения.
Рассмотрим способы обнаружения и исключения систематических погрешностей, поскольку они зависят от выбора метода измерений и его осуществелния.
По характеру изменения систематические погрешности делятся:
- постоянные – погрешности, связанные с неточной градуировкой шкалы прибора, отклонением размера меры от номинального значения, неточным выбором моделей объектов.
- переменные
– периодические – погрешность изменяющаяся по периодическому закону, например погрешность отсчета при определении времени по башенным часам, если смотреть на стрелку снизу, температурная погрешность от изменения температуры в течение суток и т.п.
– прогрессирующие – погрешности монотонно изменяющиеся (увеличивающиеся или уменьшающиеся) в общем случае по сложному, обычно неизвестному закону. Прогрессирующие погрешности во многих случаях обусловлены старением элементов средств измерений и могут быть скорректированы при его периодической поверке.
По причине возникновения погрешности измерений разделяются на три основные группы:
- методические – погрешности обусловленные неадекватностью принимаемых моделей реальным объектам, несовершенством методов измерений, упрощением зависимостей, положенных в основу измерений, неопределенностью объекта измерения;
- инструментальные – погрешности обусловленные прежде всего особенностями используемых в средствах измерений принципов и методов измерений, а также схемным, конструктивным и технологическим несовершенством средств измерений.
- взаимодейтствия – обусловлены взаимным влиянием средства измерений, объекта исследования и экспериментатора. Погрешности из-за взаимного влияния средства и объекта измерений обычно принято относить к методическим погрешностям, а погрешности, связанные с действиями экспериментатора, называются личными погрешностями. Однако такая классификация недостаточно полно отражает суть рассматриваемых погрешностей.
Выявление и устранение причин возникновения погрешностей – наиболее распространенный способ уменьшения всех видов систематических погрешностей. Примерами такого способа являются: термостатирование отдельных узлов или прибора в целом, а также проведение измерений в термостатированных помещениях для исключения температурной погрешности, применение экранов, фильтров и специальных цепей (например, эквипотенциальных цепей) для устранения погрешностей из-за влияния электромагнитных полей, наводок и токов утечек, применение стабилизированных источников питания.
Для уменьшения прогрессирующей погрешности из-за старения элементов средств измерений, параметры таких элементов стабилизируют путем искусственного и естественного старения. Кроме этого систематические погрешности можно уменьшить рациональным расположением средств измерений по отношению друг к другу, к источнику влияющих воздействий и к объекту исследования. Например магнитоэлектрические приборы должны быть удалены друг от друга, оси катушек индуктивности, должны быть расположены под углом 90°, выводы термопары должны располагаться по изотермическим линиям объекта.
Многие систематические погрешности, являющиеся не изменяющимися во времени функциями влияющих величин или обусловленные стабильными физическими эффектами, могут быть теоретически рассчитаны и устранены введением поправок или использованием специальных корректирующих цепей.
Другим радикальным способом устранения систематических погрешностей является поверки средств измерений в рабочих условиях с целью определения поправок к результатам измерения. Это дает возможность учесть все систематические погрешности без выяснения причин их возникновения. Степень коррекции систематических погрешностей в этом случае, естественно, зависит от метрологических характеристик используемых эталонных приборов и случайных погрешностей поверяемых приборов.
Фактически поверка средств измерений перед их использованием и введение поправок адекватна применению средств измерений более высоких классов точности при условии, что случайные погрешности средств измерений малы по сравнению с систематическими, а сами систематические погрешности медленно изменяются во времени.
Метод инвертирования широко используется для устранения ряда постоянных и медленно изменяющихся систематических погрешностей. Этот метод и ряд его разновидностей (метод исключения погрешности по знаку, коммутационного инвертирования, структурной модуляции, двукратных измерений, инвертирования функции преобразования и др.) основаны на выделении алгебраической суммы чесного числа сигналов измерительной информации, которые вследствие инвертирования отличаются направлением информативного сигнала, опорного сигнала или знаком погрешности.
Метод модуляции – метод близкий к методу инвертирования, в котором производится периодическое инвертирование входного сигнала и подавление помехи, имеющей однонаправленное действие.
Метод исключения погрешности по знаку — вариант метода инвертирования, который часто применяется для исключения известных по природе погрешностей, источники которых имеют направленное действие, например погрешностей из-за влияния постоянных магнитных полей, ТЭДС и др.
Метод замещения (метод разновременного сравнения) является наиболее универсальным методом, который дает возможность устранить большинство систематических погрешностей. Измерения осуществляются в два приема. Сначала по отсчетному устройству прибора делают отсчет измеряемой величины, затем, сохраняя все условия эксперимента неизменными, вместо измеряемой величины на вход прибора подают известную величину, значение которой с помощью регулируемой меры (калибратором) устанавливают таким образом, чтобы показание прибора было таким же, как при включении измеряемой величины.
Метод равномерного компарирования является разновидностью метода замещения, он используется при измерениях таких величин, которые нельзя с высокой точностью воспроизводить с помощью регулируемых мер или других технических средств. Обычно это величины, изменяющиеся с высокой частотой или по сложному закону. В качестве известных регулируемых величин при этом используются величины такого же рода, как измеряемые, но отличаютщиеся от них спектральным составом (обычно постоянные во времени и в пространстве) и создающие такой же, как и измеряемая величина, сигнал на выходе компарирующего преобразователя.
Метод эталонных сигналов заключается в том, что на вход средств измерений периодически вместо измеряемой величины подаются эталонные сигналы такого же рода, что и измеряемая величина. Разность между реальной градуировочной характеристикой используется для коррекции чувствительности или для автоматического введения поправки в результат измерения. При этом, как и при методе замещения, устраняются все систематические погрешности, но только в тех точках диапазона измерений, которые соответствуют эталонным сигналам. Метод широко используется в современных точных цифровых приборах и в информационно-измерительных системах. Примером использования этого метода является периодическая подстройка рабочего тока в компенсаторах и цифровых вольтметрах постоянного тока при помощи нормального элемента.
Тестовый метод – при использовании данного метода значение измеряемой величины определяется по результатам нескольких наблюдений, при которых в одном случае входным сигналом средства измерений является сама измеряемая величина Х, а в других – так называемые тесты, являющиеся функциями измеряемой величины.
Метод вспомагательных измерений используется для исключения погрешностей из-за влияющих величин и неинформативных параметров входного сигнала. Для реальзации этого метода одновременно с измеряемой величиной Х с помощью вспомогательных измерительных устройств производится измерение каждой из влияющих величин и вычисление с помощью вычислительного устройства, а также формул и алгоритмов поправок к результатам измерения.
Метод симметричных наблюдений заключается в проведении многократных наблюдений через равные промежутки времени и усреднении результатов наблюдений, симметрично расположенных относительно среднего наблюдения. Обычно этот метод применяется для исключения прогрессирующих погрешностей, изменяющихся по линейному закону. Так, при измерении сопротивления резистора путем сравнения напряжения на измеряемом и эталонном резисторах, включенных последовательно и питаемых от общего аккумулятора, может возникнуть погрешность вследствие разряда источника питания.
Для исключения этой погрешности проводят три измерения падения напряжения:
- на эталонном резисторе U01 = I·R0;
- через равные промежутки времени на измеряемом резисторе UX = (I — ΔI1)·RX;
- снова на эталонном резисторе U02 = (I — ΔI2)·R0.
- Если ток изменяется во времени по линейному закону, то ΔI2 = 2ΔI1; I — ΔI1 = (U01 + U02) / (2R0) и RX = R0·2·UX / (U01 + U02).
Метод симметричных наблюдений можно также использовать для устранения других видов погрешностей, например систематических погрешностей из-за влияющих величин, изменяющихся по периодическому закону. В этом случае симметричные наблюдения проводят через половину периода, когда погрешность имеет разные знаки, но одинаковые значения. Таким образом, например, можно исключить погрешность из-за наличия четных гармоник при измерении амплитудного значения напряжения при искаженной форме кривой.
Источник
Наиболее часто применяемые на практике методы и способы повышения точности измерений
«На практике наиболее часто применяются следующие методы и способы повысить точность измерений:
1) Замена менее точного средства измерений на более точное.
При отсутствии более точного средства измерений его можно разработать.
Данный способ повышения точности измерений используется, когда преобладает инструментальная составляющая погрешности измерений.
Для измерительных каналов на более точные заменяют только те средства измерений, погрешности которых преобладают при расчете суммарной погрешности канала.
2) Выбор верхнего предела измерений средств измерений, для которых нормированы приведенные основная и дополнительная погрешности, таким, чтобы ожидаемые значения измеряемой величины находились в последней трети предела измерений.
Таким способом можно уменьшить относительную погрешность средств измерений.
3) Ограничение условий применения средств измерений.
Этим способом пользуются в случае доминирования дополнительных погрешностей средств измерений, которые возникают, например, при значительных отклонениях от
нормальных значений температуры окружающего воздуха; при влиянии электромагнитных полей, вибрации и т.д.
В этих случаях уменьшают подобные влияния путем установки кондиционеров, защитных экранов от электромагнитного воздействия, амортизаторов для снижения вибрации.
4) Индивидуальная градуировка средства измерений.
Данный способ повышения точности измерений применяется в случае преобладания систематических составляющих погрешности средств измерений. Систематические составляющие погрешности средств измерений (например, для термометров сопротивления и термопар) можно значительно уменьшить путем внесения в результаты измерений поправок, полученных при индивидуальной градуировке.
5) Использование метода замещения.
С помощью такого метода исключают систематические погрешности. Он заключается в том, что после измерения измеряемая величина заменяется переменной образцовой мерой, значение которой подбирается таким образом, чтобы в измерительной схеме получить одинаковое показание прибора. При этом значение измеряемой величины принимается равным значению образцовой меры.
Пример: измерение электрического сопротивления на мосте постоянного тока.
6) Внедрение способов контроля работоспособного состояния средств измерений в процессе их эксплуатации.
Это мероприятие способствует выявлению, исключению или снижению метрологических отказов в средствах измерений. Во многих случаях системы контроля работоспособности средств измерений в процессе эксплуатации эффективны без каких-либо ограничений на составляющие погрешности средств измерений и их случайный или систематический характер.
7) Автоматизация измерительных процедур.
Такое мероприятие снижает трудоемкость измерений, способствует исключению субъективных погрешностей, возникающих при обработке диаграмм, вычислении промежуточных и конечных результатов измерений, приготовлении проб для анализов и других операций, выполняемых человеком.
8) Использование метода обратного преобразования.
Метод используется для автоматической коррекции погрешности средств измерений.
Подбирается такой обратный преобразователь, статическая реальная функция преобразования которого должна совпадать с функцией, обратной номинальной характеристике преобразования средства измерений.
Обратный преобразователь должен быть значительно точнее прямого преобразователя.
На вход обратного преобразователя подается реальный выходной сигнал средства измерений. Разность двух сигналов – входной сигнал средства измерений минус выходной сигнал обратного преобразователя — соответствует погрешности средства измерений и может использоваться для выработки корректирующего сигнала в системе настройки и в системе введения поправок.
При этом методе корректируются инструментальные погрешности любого происхождения, т.к. точность коррекции определяется высокой точностью обратного преобразователя. Коррекция осуществляется в течение всего режима измерения.
Метод широко используется при измерении, например, электрических величин.
9) Выполнение многократных наблюдений с последующим усреднением их результатов.
Этот метод применяется при преобладании случайной составляющей погрешности измерений. Как известно, случайная составляющая погрешности измерений среднего значения меньше случайной составляющей погрешности измерений текущих значений.
Метод используется тогда, когда в течение интервала времени усреднения не происходит заметное изменение текущих значений измеряемой величины, но погрешность измерений текущих значений в течение этого же интервала существенно меняется.
10) Использование тестовых сигналов.
Этот метод повышения точности измерений применяется в измерительных системах для измерений электрических и неэлектрических величин.
Суть метода состоит в определении параметров статической функции преобразования (СФП) с помощью дополнительных преобразований тестов, каждый из которых функционально связан с измеряемой величиной. Тестовые методы позволяют повышать точность измерений за счет уменьшения систематических и так называемых квазисистематических погрешностей.
11) Использование информационной избыточности.
Информационная избыточность – такое состояние измерительной информации, при котором она больше необходимой для реализации функций управления объектом.
Пример использования информационной избыточности для повышения точности измерений — включение в измерительную систему дополнительных средств измерений, измеряющих одну и ту же величину, и усреднение их показаний.
Другой пример — наличие связей между измеряемыми величинами, обусловленных свойствами объекта измерений или управления. Эти связи могут быть использованы для исключения промахов при измерении отдельных величин и для повышения точности измерений всей совокупности измеряемых величин.
12) Разработка или совершенствование методик выполнения измерений
Если доминируют методические составляющие погрешности измерений, то этот способ повышения точности измерений является единственно эффективным.
В ИИС и АСУ ТП составляющие методической погрешности измерений, обусловленные отличием алгоритма вычислений от функции, строго определяющей зависимость результатов вычислений от аргументов измеряемых прямым методом величин, уменьшают применением более совершенного алгоритма.
При существенной методической погрешности измерений средних или интегральных значений, обусловленной ограниченным числом «точек» измерений или отклонениями действительных значений от номинальных значений неизмеряемых величин, входящих в функцию в виде констант, соответствующее совершенствование методики выполнения измерений дает заметный эффект в повышении точности измерений. Методики выполнения измерений могут быть усовершенствованы изменением алгоритма обработки результатов измерений. В этом случае проводят аттестацию алгоритма в соответствии с нормативными документами.
Источник