Какими способами можно представить информацию частями звуками
Виды информации. Представление информации.
По способу восприятия информации человеком можно выделить визуальную (зрительную), аудиальную (звуковую), обонятельную (запахи) вкусовую, тактильную (осязательную), вестибулярную и мышечную информацию (рис.3).
Визуальную информацию люди воспринимают с помощью глаз. Человек может увидеть объект или явление, букву или цифру, картину или фильм, схему или карту, жест или танец. Аудиальную информацию люди воспринимают с помощью ушей. Человек может услышать произвольные звуки, шум, музыку, пение и речь. Обонятельную информацию, или запахи, человек воспринимает с помощью носа. Запах можно охарактеризовать как терпкий или пряный, приятный или неприятный, тяжелый или легкий. Вкусовую информацию человек воспринимает с помощью языка. Вкус может быть горький или сладкий, кислый или соленый. Тактильную информацию человек воспринимает кожей. Прикасаясь к предмету, можно определить его температуру (холодный или горячий) и вид поверхности (гладкая или шероховатая, мокрая или сухая). Вестибулярную информацию человек воспринимает с помощью вестибулярного аппарата, который отслеживает положение тела человека в трехмерном пространстве. Летя в самолете и не видя горизонта, человек может определить, куда и как он перемещается: вверх или вниз, вправо или влево, ускоренно или замедленно. Мышечную информацию люди воспринимают с помощью мышц. Закрыв глаза, человек не пронесет ложку с супом мимо своего рта, может дотронуться указательным пальцем до своего носа, сравнить массу гирь, одинаковых на ощупь.
Воспринимать информацию могут не только люди, но и животные, и растения. Однако в отличие от людей, восприятие информации животными и растениями имеет свои особенности. Например, слоны способны воспринимать звуки, которые не слышит человек, у собак лучше всего развито обоняние, у летучих мышей – слух, а растения могут получать информацию с помощью корней и листьев. Несмотря на эти особенности, в живой природе, так же как и в мире людей, информация играет важную роль в обеспечении жизненных процессов. Воспринимаемую с помощью органов чувств информацию человек стремится выразить так, чтобы она была понятна другим. Одну и ту же информацию, в зависимости от цели деятельности, можно выразить разными способами и представить в разной форме.
По форме представления принято выделять числовую, текстовую, графическую, звуковую и комбинированную информацию (рис. 4).
Рис. 4. Виды информации по форме представления
Например, если человек хочет выучить слова песни наизусть, то, скорее всего, он запишет стихи с помощью букв. В этом случае информация будет представлена в текстовой форме. Запомнить мелодию песни позволит прослушивание этой песни в исполнении певца или музыканта. В этом случае информация будет представлена в звуковой форме. Образ, навеянный стихами или мелодией, можно изобразить в графической форме с помощью рисунка.
Для того чтобы выяснить количество поклонников исполнителя песни, необходимо их подсчитать и результат представить в числовой форме. Каждая из этих форм представления информации имеет свои особенности. Графическая информация наиболее доступна, так как срезу передает визуальный образ.
С помощью текстовой и звуковой информации можно представить исчерпывающие разъяснения. Числовая информация дает возможность проводить различные сравнения и вычисления. Поэтому чаще всего информацию представляют в комбинированной форме. Частным случаем комбинированной информации является мультимедийная информация , когда текстовая и числовая информация сочетается со звуковой и графической информацией, с видеоизображением .
Для представления информации человек использует различные знаки. Один и тот же знак может иметь разный смысл. Если человек наделил знак смыслом, то этот знак называют символом
Например, нарисованный овал может означать или букву «О», или цифру ноль, или химический элемент кислород, или геометрическую фигуру. В нашем примере нарисованный овал – это знак. Буква, цифра и обозначение химического элемента являются символами.
Для того чтобы понимать смысл информации, представленной с помощью символов, человеку необходимо знать не только символы, но и правила составления сообщений из этих символов. Говоря другими словами, человеку необходимо знать язык. Язык может быть разговорным, языком рисунков, мимики и жестов, языком науки и искусства.
Выделяют естественные (разговорные) и искусственные языки (рис. 5).
Естественные языки исторически сложились в процессе развития человеческой цивилизации. К естественным языкам относятся русский, английский, китайский и многие другие языки. В мире насчитывается более 10 тыс. разных языков, диалектов и наречий.
Искусственные языки специально созданы для профессионального применения в какой-либо области человеческой деятельности. Некоторые искусственные языки складывались в течение длительного исторического периода, например язык математических обозначений. С этой точки зрения они мало отличаются от естественных языков. Примерами искусственных языков являются эсперанто, языки программирования, язык математики, язык химии, язык логики, язык флажков на флоте, язык дорожных знаков.
Некоторые естественные языки имеют искусственно созданные алфавиты. Так, например, авторами русского языка являются Кирилл и Мефодий.
Представление информации с помощью определенного языка всегда связано с алфавитом. Алфавит содержит конечный набор символов, из которых можно составить как угодно много слов. Все символы в алфавите упорядочены.
Количество символов в алфавите называют мощность алфавита.
Представленную информацию можно преобразовать из одной последовательности знаков в другую, не задумываясь о смысле сообщения. Такой процесс преобразования сообщения называется кодированием. Обратный процессом кодированию является процесс декодирования. Для того чтобы выполнить кодирование или декодирование, необходимо знать правила перевода одних знаков в другие знаки. Говоря другими словами, надо знать код или шифр.
По мере развития средств появились различные способы кодирования информации. Например, кодирование с помощью азбуки (кода) Морзе (длительный сигнал – тире, короткий сигнал – точка, нет сигнала – пауза), с помощью двоичного кода (нет сигнала – 0, есть сигнал – 1). Кодирование используется для представления информации в такой форме, которая будет наиболее удобна для работы человека или технического устройства. Например, человеку удобно и привычно работать с десятичными числами, а компьютер настроен на работу с двоичными числами. Поэтому десятичное число, введенное с помощью клавиатуры компьютера, кодируется в двоичное число. При выводе числа на экран монитора происходит декодирование из двоичного числа в десятичное число. Кодирование информации необходимо не только для ее рационального представления, но и для ее эффективной защиты. Не случайно другим примером кода является пин-код сотового телефона или банковской карточки, а также код, используемый в качестве ключа от цифрового замка дорожной сумки.
Источник
Краткий конспект к уроку «Представление звуковой информации»
20 . Представление звуковой информации в компьютере
Звук представляет собой непрерывный сигнал — звуковую волну с меняющейся амплитудой и частотой.
Чем больше амплитуда сигнала, тем он громче для человека.
Чем больше частота сигнала, тем выше тон.
Частота звуковой волны выражается числом колебаний в секунду и измеряется в герцах (Гц, Hz).
Человеческое ухо способно воспринимать звуки в диапазоне от 20 Гц до 20 кГц, который называют звуковым .
Количество бит, отводимое на один звуковой сигнал, называют глубиной кодирования звука .
Современные звуковые карты обеспечивают 16 -, 32 — или 64 -битную глубину кодирования звука.
При кодировании звуковой информации непрерывный сигнал заменяется дискретным , то есть превращается в последовательность электрических импульсов (двоичных нулей и единиц).
Процесс перевода звуковых сигналов от непрерывной формы представления к дискретной, цифровой форме называют оцифровкой .
Важной характеристикой при кодировании звука является частота дискретизации — количество измерений уровней сигнала за 1 секунду:
— 1 (одно) измерение в секунду соответствует частоте 1 Гц;
— 1000 измерений в секунду соответствует частоте 1 кГц.
Частота дискретизации звука — это количество измерений громкости звука за одну секунду.
Количество измерений может лежать в диапазоне от 8 кГц до 48 кГц (от частоты радиотрансляции до частоты, соответствующей качеству звучания музыкальных носителей).
Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).
Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.
Оценить информационный объём моноаудиофайла ( V ) можно следующим образом: V = N ⋅ f ⋅ k , где N — общая длительность звучания (секунд), f — частота дискретизации (Гц), k — глубина кодирования (бит).
Например, при длительности звучания 1 минуту и среднем качестве звука ( 16 бит, 24 кГц):
V = 60 ⋅ 24000 ⋅ 16 бит = 23040000 бит = 2880000 байт = 2812,5 Кбайт = 2,75 Мбайт.
При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.
Например, оценим информационный объём цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука ( 16 битов, 24000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду и умножить на 2 (стереозвук):
V =16 бит ⋅ 24000 ⋅ 2 = 768000 бит = 96000 байт = 93,75 Кбайт.
Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления: метод FM и метод Wave-Table .
Метод FM ( Frequency Modulation ) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, и, следовательно, может быть описан кодом. Разложение звуковых сигналов в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи ( АЦП ).
Преобразование звукового сигнала в дискретный сигнал: a — звуковой сигнал на входе АЦП; б — дискретный сигнал на выходе АЦП .
Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи ( ЦАП ). Процесс преобразования звука представлен на рис. ниже. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.
Преобразование дискретного сигнала в звуковой сигнал: а — дискретный сигнал на входе ЦАП; б — звуковой сигнал на выходе ЦАП .
Таблично-волновой метод ( Wave-Table ) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.
Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI , WAV , МРЗ .
Формат MIDI ( Musical Instrument Digital Interface ) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.
Формат аудиофайла WAV ( waveform ) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV .
Формат МРЗ ( MPEG-1 Audio Layer 3 ) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.
Источник
10. Кодирование информации
Понять, что такое кодирование и как люди кодируют информацию.
Научиться кодировать информацию разными способами.
Когда мы говорим, это звуковое кодирование информации. Речь человека можно иначе назвать звуковым сообщением. Каждое слово в звуковом сообщении имеет определённое значение, то есть смысл. Слова несут человеку информацию. Если устное сообщение закодировать знаками на носителе информации, например на бумаге, это будет письменное сообщение.
Чтобы создавать письменные сообщения, люди изобрели письменность.
Письменность — это способ кодирования информации с целью сохранять информацию и передавать её.
Для каждого звука люди придумали своё графическое изображение — знак, который назвали буквой.
Это могло быть и так. Услышал человек звук. Он понял, что жужжит жук, и изобразил это знаком, похожим на жука.
Буква Ж напоминает жука, который жужжит. А слово «жужжит» не случайно содержит три буквы Ж. При произношении оно напоминает звуки, которые издает жук.
Буквы придумали для кодирования звуковой информации, чтобы её было удобно хранить и передавать.
Буквы записали в определённом порядке, и этот список букв назвали алфавитом. Строгий порядок расположения букв в алфавите связывает буквы в систему знаков. Каждый знак занимает определённое место.
Слово «алфавит» придумали в Древней Греции. Оно произошло от названия двух первых букв греческого алфавита: «альфа» и «вита».
На Руси пользовались буквами, которые изображены на рисунке:
От названия первых двух букв славянского алфавита «аз» и «буки» произошло слово «азбука».
Кодирование информации с помощью букв называют алфавитным письмом.
Буквенное кодирование информации обладает замечательным свойством. Например, в алфавите русского языка всего 33 буквы, но с их помощью можно закодировать любые слова.
Кодирование информации — это её представление на носителе в форме, удобной для хранения и передачи.
Кодировать информацию можно и другими знаками — цифрами. Из цифр можно составить число по специальным правилам. Правила составления чисел из цифр школьники изучают на уроках математики. Числом кодируют количество предметов или порядковый номер предмета в ряду.
Кодировать информацию можно звуками барабана, колокола, горна. В мобильном телефоне вызов разных абонентов можно закодировать разными мелодиями.
Чтобы записать мелодию на бумаге, используют нотное кодирование. Для этого люди придумали упорядоченный набор нотных знаков: систему символов. Каждая нота представляет собой условный графический знак. Ноты располагают на нотоносце. Нотоносец — это пять линий, связанных скрипичным или басовым ключом. Каждая нота указывает высоту и длительность звука.
Источник