Какими способами можно получить когерентные световые волны
3.2. Методы получения когерентных волн
Для получения когерентных световых волн с помощью обычных (нелазерных) источников применяют метод разделения света от одного источника на две или нескольких систем волн (световых пучков). В каждой из них представлено излучение одних и тех же атомов источника, так что эти волны когерентны между собой и интерферируют при наложении.
Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.
Источником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S 1 и S 2 , параллельные щели S.
Таким образом, щели S 1 и S 2 играют роль когерентных источников. На экране Э (область ВС) наблюдается интерференционная картина в виде чередующихся светлых и темных полос.
Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S 1 и S 2 , являющихся когерентными. Таким образом, на экране Э (область ВС) наблюдается интерференционная картина.
3.3. Оптическая длина пути и разность хода
Пусть две когерентные волны (см. 3.1) создаются одним источником S, но до экрана проходят разные геометрические длины путей l 1 и l 2 в средах с абсолютными показателями преломления n 1 и n 2 соответственно (рис.4).
Тогда фазы этих волн [см. (1) и (2.9)]
w t — j 1 = w t — k 1 l 1 + j 0 , w t — j 2 = w t — k 2 l 1 + j 0
j 2 — j 1 = k 2 l 2 — k 1 l 1 = (12)
где l 1 = l /n 1 , l 2 = l /n 2 -длины волн в средах, показатели преломления которых n 1 и n 2 соответственно, l — длина волны в вакууме.
Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны.
Величину (13)
называют оптической разностью хода интерферирующих волн. С учетом этого разность фаз
j 2 — j 1 = (14)
Источник
Способы получения когерентных источников света
Когерентные источники света – это источники, которые имеют постоянную во времени разность фаз, согласованное протекание нескольких колебательных или волновых процессов, степень которых различна.
Имеется много способов получения когерентных источников света, но суть их одинакова. С помощью разделения пучка на две части получают два мнимых источника света, дающих когерентные волны.
Интерференция света – сложение двух или нескольких световых волн с одинаковыми периодами, сходящихся в одной точке, в результате которого наблюдается увеличение или уменьшение амплитуда результирующей волны. Для получения устойчивой интерференционной картины необходимо, чтобы складываемые волны были когерентны. Когерентными называют волны с одинаковой частотой (периодом) и постоянной во времени разностью фаз. Чтобы получить когерентные волны необходимо световую волну от одного источника разделить на две или несколько волн. После прохождения различных путей эти волны, имея некоторую разность хода, интерферируют.
Приёмы разделения волны:
· С помощью бипризмы Френеля:
Волна, идущая от источника света, раздваивается из-за преломления света в двух половинах бипризмы. Получаемы волны 1 и 2 как бы исходят от двух мнимых источников S1 и S2 и являются когерентными, поэтому в заштрихованной области наблюдается интерференция.
Свет, проходящий через узкое отверстие S, падает на экран с двумя отверстиями S1 и S2 и делится на две когерентных волны, поэтому в заштрихованной области наблюдается интерференция, а на экране – интерференционная картина.
2. Вывод выражения для расстояния l между мнимыми изображения источника в случае бипризмы.
Бипризма Френеля представляет собой изготовленные из одного куска стекла две симметричные призмы, имеющие общее основание и малый преломляющий угол G≈1°. На расстоянии L1 от бипризмы располагается источник света S. Можно показать, что в этом случае, если преломляющий угол призмы мал и лучи падают на призму под небольшими углами, все лучи отклоняются призмой почти на одинаковый угол ϕ, равный
где n – показатель преломления стекла, из которого изготовлена призма, α – преломляющий угол каждой половинки бипризмы. При этом мнимые изображения S1 и S2 точечного источника света S лежат с ним в одной плоскости. В результате образуются две когерентные волны, исходящие из мнимых источников S1 и S2. Расстояние d между мнимыми источниками равно:
где L1 – расстояние между источником S и бипризмой. При этом, sin ϕ≈ϕ (так как угол ϕ достаточно мал), тогда:
Источник
2.3. Способы получения когерентных волн
Очевидно, что получить когерентные волны от двух независимых источников света практически невозможно. Это связано с тем, что свет атомом излучается в процессе перехода электронов атома с одного энергетического уровня на другой. Момент такого перехода носит вероятностный характер, соответственно, случайна фаза излучаемой атомом электромагнитной волны. Излучение источника складывается из совокупности излучений отдельных атомов и фаза его, естественно, меняется случайным образом. Следовательно, независимые источники излучают световые волны, разность фаз которых меняется хаотично.
Когерентные волны можно получить, если излучение одного источника разделить на два пучка, заставить каждый пучок пройти разные оптические пути, а затем наложить их друг на друга. В этом случае фазы световых волн в каждом пучке меняются хаотично, но синхронно друг с другом, т.е. разность фаз остается постоянной, и пучки будут когерентными. Такое разделение можно осуществить двумя способами — делением волнового фронта и делением амплитуды волны. Способы деления амплитуды волны будут рассмотрены далее, а в данном пункте рассмотрим несколько конкретных интерференционных схем, в которых используется метод деления световой волны по фронту.
Схема Юнга. Пучок света падает на непрозрачный экран с узкой щелью (рис.2.3). Прошедшим светом освещаются две узкие параллельные щели во втором непрозрачном экране. На этих щелях свет испытывает дифракцию, в результате чего за щелями получаются два расходящихся световых пучка. Эти пучки когерентные, т.к. исходят от одного источника. В области их перекрытия АВ наблюдается интерференционная картина.
Бизеркала Френеля. Два плоских соприкасающихся зеркала (рис.1.2) установлены так, что угол между их плоскостями близок к 180 О . Зеркала освещаются светом от источника S (как правило, в качестве источника берется узкая светящаяся щель, ориентированная параллельно линии соединения зеркал). При отражении от зеркал падающий свет разделяется на две когерентные цилиндрические волны, распространяющиеся так, как если бы они исходили из мнимых источников S1 и S2, являющихся изображением источника в каждом из зеркал. На экране, где волны перекрываются, наблюдается интерференционная картина.
Бипризма Френеля. Бипризма Френеля (рис.2.5) состоит из двух призм с небольшими преломляющими углами , склеенных по малым основаниям. Параллельно основаниям призм на оси симметрии системы располагается узкая светящаяся щель . После преломления в каждой из призм лучи отклоняются от своего первоначального пути на угол =(n-1), где n— показатель преломления стекла, из которого изготовлены призмы. После преломления в бипризме падающий от S пучок света разделяется на два, как бы исходящих из мнимых источников S1 и S2, находящихся в точках пересечения продолжений преломленных лучей. На экране в области пересечения преломленных пучков АВ наблюдается интерференционная картина.
Билинза Бийе. а) Тонкая сферическая линза разрезается по диаметру, и ее половинки разводятся на небольшое расстояние. Образовавшийся промежуток между половинками линзы закрывается непрозрачным экраном. Источник света S помещается на оси симметрии системы на двойном фокусном расстоянии от линзы. В результате получают два действительных изображения S1 и S2 точечного источника S (рис.2.5). S1 и S2 являются источниками сферических когерентных волн. В области их перекрытия наблюдается интерференционная картина.
б) Из тонкой линзы вырезается по диаметру узкая полоска, а оставшиеся части склеиваются по срезу. Источник света помещается в фокусе линзы. В результате преломления лучей в половинках линзы получаем два пучка с плоскими фронтами, распространяющимися под малым углом друг к другу. В области перекрытия пучков наблюдается интерференционная картина (см. рис.2.6).
Во всех (кроме последнего) рассмотренных выше способах получения когерентных волн расчет параметров интерференционной картины сводится к уже изученному нами случаю двух когерентных источников (п.2.2). Надо только в формуле (2.14) использовать расстояние между источниками S1 и S2 и расстояние от источников до экрана, найденные с учетом особенностей геометрии каждого конкретного случая.
Источник
Методы получения когерентных световых волн
Вернемся к вопросу, который обсуждался уже в лекции 4.Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Этому условию удовлетворяют монохроматические волны — неограниченные в пространстве волны одной определенной и строго постоянной частоты. Так как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны. Поэтому на опыте не наблюдается интерференция света от независимых источников, например от двух электрических лампочек. Понять физическую причину немонохроматичности, а, следовательно, и некогерентности волн, испускаемых двумя независимыми источниками света, можно исходя из самого механизма испускания света атомами. В двух самостоятельных источниках света атомы излучают независимо друг от друга. В каждом из таких атомов процесс излучения конечен и длится очень короткое время (10
8 с). За это время возбужденный атом возвращается в нормальное состояние и излучение им света прекращается. Возбудившись вновь, атом
снова начинает испускать световые волны, но уже с новой начальной фазой. Так как разность фаз между излучением двух таких независимых атомов изменяется при каждом новом акте испускания, то волны, спонтанно излучаемые атомами любого источника света, некогерентны. Таким образом, волны, испускаемые атомами, лишь в течение интервала времени 10
8 с имеют приблизительно постоянные амплитуду и фазу колебаний, тогда как за больший промежуток времени и амплитуда, и фаза изменяются.
Получить когерентные волны можно двумя способами: делением фронта волны и делением амплитуды. Оба способа сводятся к делению одной волны на две. К первому способу относятся, опыты Юнга на двух щелях, зеркала Френеля, бипризма Френеля
|
Опыт Юнга. Исторически первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2 (рис5.1). Проходя через каждую из щелей, световой пучок уширялся, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.
|
Бипризма Френеля. Изготовленные из одного куска стекла две призмы с малым преломляющим углом имеют одну общую грань. Параллельно этой грани, на расстоянии а от нее, располагается прямолинейный источник света S. Можно показать, что в случае, когда преломляющий угол
призмы очень мал и углы падения лучей на грань призмы не очень велики, все лучи отклоняются призмой на практически одинаковый угол. Угол падения лучей на бипризму невелик. Поэтому все лучи отклоняются каждой из половин бипризмы на одинаковый угол. В результате образуются две когерентные цилиндрические волны, исходящие из мнимых источников S1 и S2, лежащих в одной плоскости с S (рис.5.2).
|
Зеркала Френеля. Два плоских соприкасающихся зеркала ОМ и ON располагаются так, что их отражающие поверхности образуют угол, близкий к p Соответственно угол j на рисунке очень мал. Параллельно линии ‘пересечения зеркал О на расстоянии г от нее помещается прямолинейный источник света S (например, узкая светящаяся щель). Зеркала отбрасывают на экран Э две цилиндрические когерентные волны, распространяющиеся так, как если бы Они исходили из мнимых источников S1 и S2 (рис.5.3)
Дата добавления: 2017-10-04 ; просмотров: 4842 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник