Какими способами можно описать алгоритм решения задачи

Информатика

Алгоритмы и способы их описания.

Алгоритм — это система точных и понятных предписаний о содержании и последовательности выполнения конечного числа действий, необходимых для решения любой задачи данного типа.

Примеры: правила сложения, умножения, решения алгебраических уравнений и т.п.

1.Универсальность (массовость) — применимость алгоритма к различным наборам исходных данных.

2.Дискретность — процесс решения задачи по алгоритму разбит на отдельные действия.

3.Конечность — каждое из действий и весь алгоритм в целом обязательно завершаются.

4.Результативность — по завершении выполнения алгоритма обязательно получается конечный результат.

5.Выполнимость (эффективность) — результата алгоритма достигается за конечное число шагов.

6.Детерминированность (определенность) — алгоритм не должен содержать предписаний, смысл которых может восприниматься неоднозначно. Т.е. одно и то же предписание после исполнения должно давать один и тот же результат.

7.Последовательность – порядок исполнения команд должен быть понятен исполнителю и не должен допускать неоднозначности.

1. вычислительные алгоритмы , работающие со сравнительно простыми видами данных, такими как числа и матрицы, хотя сам процесс вычисления может быть долгим и сложным;

2. информационные алгоритмы , представляющие собой набор сравнительно простых процедур, работающих с большими объемами информации (алгоритмы баз данных);

3. управляющие алгоритмы , генерирующие различные управляющие воздействия на основе данных, полученных от внешних процессов, которыми алгоритмы управляют.

По типу передачи управления алгоритмы бывают: основные (главные выполняемые программы) и вспомогательные (подпрограммы).

Для задания алгоритма необходимо описать следующие его элементы:

1.набор объектов, составляющих совокупность возможных исходных данных, промежуточных и конечных результатов;

3.правило непосредственной переработки информации (описание последовательности действий);

5.правило извлечения результатов.

Способы описания алгоритмов.

Символьный, когда алгоритм описывается с помощью специального набора символов (специального языка).

Словесная форма записи алгоритмов обычно используется для алгоритмов, ориентированных на исполнителя-человека. Команды такого алгоритма выполняются в естественной последовательности, если не оговорено противного.

Графическая запись с помощью блок-схем осуществляется рисованием последовательности геометрических фигур, каждая из которых подразумевает выполнение определенного действия алгоритма. Порядок выполнения действий указывается стрелками. Графическая запись алгоритма имеет ряд преимуществ: каждая операция вычислительного процесса изображается отдельной геометрической фигурой и графическое изображение алгоритма наглядно показывает разветвления путей решения задачи в зависимости от различных условий, повторение отдельных этапов вычислительного процесса и другие детали.

Правила создания блок – схем:

1.Линии, соединяющие блоки и указывающие последовательность связей между ними, должны проводится параллельно линиям рамки.

2.Стрелка в конце линии может не ставиться, если линия направлена слева направо или сверху вниз.

3.В блок может входить несколько линий, то есть блок может являться преемником любого числа блоков.

4.Из блока (кроме логического) может выходить только одна линия.

5.Логический блок может иметь в качестве продолжения один из двух блоков, и из него выходят две линии.

6.Если на схеме имеет место слияние линий, то место пересечения выделяется точкой. В случае, когда одна линия подходит к другой и слияние их явно выражено, точку можно не ставить.

7.Схему алгоритма следует выполнять как единое целое, однако в случае необходимости допускается обрывать линии, соединяющие блоки.

В линейном алгоритме операции выполняются последовательно, в порядке их записи. Каждая операция является самостоятельной, независимой от каких-либо условий. На схеме блоки, отображающие эти операции, располагаются в линейной последовательности.

Читайте также:  Хозяйственному законодательству известны следующие способы обеспечения исполнения обязательств

В алгоритме с ветвлением предусмотрено несколько направлений (ветвей). Каждое отдельное направление алгоритма обработки данных является отдельной ветвью вычислений. Направление ветвления выбирается логической проверкой, в результате которой возможны два ответа:

1.«да» — условие выполнено.

2.«нет» — условие не выполнено.

Циклические алгоритмы содержат цикл – это многократно повторяемый участок алгоритма.Различают циклы с предусловием и постусловием.Также циклы бывают детерминированные и итерационные.Цикл называется детерминированным, если число повторений тела цикла заранее известно или определено. Цикл называется итерационным, если число повторений тела цикла заранее неизвестно, а зависит от значений параметров (некоторых переменных), участвующих в вычислениях.

Источник

Какими способами можно описать алгоритм решения задачи

Различают следующие виды алгоритмов :

линейный – список команд (указаний), выполняемых последовательно друг за другом;

разветвляющийся – алгоритм, содержащий хотя бы одну проверку условия, в результате которой обеспечивается переход на один из возможных вариантов решения;

циклический – алгоритм, предусматривающий многократное повторение одной и той же последовательности действий. Количество повторений обусловливается исходными данными или условием задачи.

Любая алгоритмическая конструкция может содержать в себе другую конструкцию того же или иного вида, т. е. алгоритмические конструкции могут быть вложенными. Рассмотрим следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.

Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг,электропила, дрель и т.п.) имеет инструкцию по эксплуатации, т.е.словесное описания алгоритма, в соответствии которому данный прибор должен использоваться. Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.

1. определить температуру воздуха

2. если температура ниже 0, то надеть шубу, иначе надеть куртку

Псевдокод — описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основныеэтапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика. Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.

Блок-схема — описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности, он обеспечивает «читаемость»алгоритма и явно отображает порядок выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.

Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем они настолько достаточны, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования .

Читайте также:  Энтропийный способ измерения информации это

Источник

Алгоритмы

Алгоритмы. Разработка алгоритма решения задачи

Исключительно важно использовать язык блок-схем при разработке алгоритма решения задачи. Решение одной и той же задачи может быть реализовано с помощью различных алгоритмов, отличающихся друг от друга как по времени счета и объему вычислений, так и по своей сложности. Запись этих алгоритмов с помощью блок-схем позволяет сравнивать их, выбирать наилучший алгоритм, упрощать, находить и устранять ошибки.

Отказ от языка блок-схем при разработке алгоритма и разработка алгоритма сразу на языке программирования приводит к значительным потерям времени, к выбору неоптимального алгоритма. Поэтому необходимо изначально разработать алгоритм решения задачи на языке блок-схем, после чего алгоритм перевести на язык программирования.

При разработке алгоритма сложной задачи используется метод пошаговой детализации. На первом шаге продумывается общая структура алгоритма без детальной проработки отдельных его частей. Блоки, требующие детализации, обводятся пунктирной линией и на последующих шагах разработки алгоритма продумываются и детализируются.

В процессе разработки алгоритма решения задачи можно выделить следующие этапы:

  • Этап 1 . Математическое описание решения задачи.
  • Этап 2 . Определение входных и выходных данных.
  • Этап 3 . Разработка алгоритма решения задачи.

Базовые алгоритмические конструкции

В теории программирования доказано, что для записи любого, сколь угодно сложного алгоритма достаточно трех базовых структур:

  • следование (линейный алгоритм);
  • ветвление (разветвляющийся алгоритм);
  • цикл-пока (циклический алгоритм).

Линейные алгоритмы

Линейный алгоритм образуется из последовательности действий, следующих одно за другим. Например, для определения площади прямоугольника необходимо сначала задать длину первой стороны, затем задать длину второй стороны, а уже затем по формуле вычислить его площадь.

Пример

ЗАДАЧА. Разработать алгоритм вычисления гипотенузы прямоугольного треугольника по известным значениям длин его катетов a и b.

На примере данной задачи рассмотрим все три этапа разработки алгоритма решения задачи:

Этап 1. Математическое описание решения задачи.

Математическим решением задачи является известная формула:

,

где с-длина гипотенузы, a, b – длины катетов.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения катетов a и b. Выходными данными является длина гипотенузы – c.

Этап 3. Разработка алгоритма решения задачи.

На данной схеме цифрами указаны номера элементов алгоритма, которые соответствуют номерам пунктов словесного описания алгоритма.

Разветвляющиеся алгоритмы

Алгоритм ветвления содержит условие, в зависимости от которого выполняется та или иная последовательность действий.

Пример

ЗАДАЧА. Разработать алгоритм вычисления наибольшего числа из двух чисел x и y.

Этап 1. Математическое описание решения задачи.

Из курса математики известно, если x > y, то наибольшее число x, если x y, то переход к шагу 6, иначе к шагу 7.

  • Вывод информации: число x больше y. Переход к шагу 8.
  • Вывод информации: число y больше x. Переход к шагу 8.
  • Конец алгоритма.
  • В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма, которые соответствуют номерам шагов словесного описания алгоритма

    В рассматриваемом алгоритме (рис.3) имеются три ветви решения задачи:

    • первая: это элементы 1, 2, 3, 4, 8.
    • вторая: это элементы 1, 2, 3, 5, 6, 8
    • третья: это элементы 1, 2, 3, 5, 7, 8.

    Выбор ветви определяется значениями x и y в элементах 3 и 5, которые являются условиями, определяющими порядок выполнения элементов алгоритма. Если условие (равенство), записанное внутри символа «решение», выполняется при введенных значениях x и y, то следующими выполняется элементы 4 и 8. Это следует из того, что они соединены линией с надписью «да» и направление (последовательность) вычислений обозначена стрелочкой.

    Если условие в элементе 3 не выполняется, то следующим выполняется элемент 5. Он соединен с элементом 3 линией с надписью «нет». Если условие, записанное в элементе 5, выполняется, то выполняется элементы 6 и 8, в противном случае выполняются элементы 7 и 8.

    Циклические алгоритмы

    Циклический алгоритм определяет повторение некоторой части действий (операций), пока не будет нарушено условие, выполнение которого проверяется в начале цикла. Совокупность операций, выполняемых многократно, называется телом цикла.

    Алгоритмы, отдельные действия в которых многократно повторяются, называются циклическими алгоритмами, Совокупность действий, связанную с повторениями, называют циклом.

    При разработке алгоритма циклической структуры выделяют следующие понятия:

    • параметр цикла – величина, с изменением значения которой связано многократное выполнение цикла;
    • начальное и конечное значения параметров цикла;
    • шаг цикла – значение, на которое изменяется параметр цикла при каждом повторении.

    Цикл организован по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла и условия продолжения цикла.

    В подготовку цикла входят действия, связанные с заданием исходных значений для параметров цикла:

    • начальные значения цикла;
    • конечные значения цикла;
    • шаг цикла.

    В тело цикла входят:

    • многократно повторяющиеся действия для вычисления искомых величин;
    • подготовка следующего значения параметра цикла;
    • подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

    В условии продолжения цикла определяется допустимость выполнения повторяющихся действий. Если параметр цикла равен или превысил конечное значение цикла, то выполнение цикла должно быть прекращено.

    Пример

    ЗАДАЧА. Разработать алгоритм вычисления суммы натуральных чисел от 1 до 100.

    Этап 1. Математическое описание решения задачи.

    Обозначим сумму натуральных чисел через S. Тогда формула вычисления суммы натуральных чисел от 1 до 100 может быть записана так:

    где Xi – натуральное число X c номером i, который изменяется от 1 до n, n=100 – количество натуральных чисел.

    Этап 2. Определение входных и выходных данных.

    Входными данными являются натуральные числа: 1, 2, 3, 4, 5, …, 98, 99, 100.

    Выходные данные – значение суммы членов последовательности натуральных чисел.

    Параметр цикла величина, определяющая количество повторений цикла. В нашем случае i – номер натурального числа.

    Подготовка цикла заключается в задании начального и конечного значений параметра цикла.

    • начальное значение параметра цикла равно 1,
    • конечное значение параметра цикла равно n,
    • шаг цикла равен 1.

    Для корректного суммирования необходимо предварительно задать начальное значение суммы, равное 0.

    Тело цикла. В теле цикла будет выполняться накопление значения суммы чисел, а также вычисляться следующее значение параметра цикла по формулам:

    Условие продолжения цикла: цикл должен повторяться до тех пор, пока не будет добавлен последний член последовательности натуральных чисел, т.е. пока параметр цикла будет меньше или равен конечному значению параметра цикла.

    Этап 3. Разработка алгоритма решения задачи.

    Введем обозначения: S – сумма последовательности, i – значение натурального числа.

    Начальное значение цикла i=1, конечное значение цикла i =100, шаг цикла 1.

    Источник

    Читайте также:  Способы приготовления белокочанной капусты
    Оцените статью
    Разные способы
    Словесное описание алгоритма Запись алгоритма на языке блок-схем
    1. Начало алгоритма.
    2. Ввод значений длин катетов a и b.
    3. Вычисление длины гипотенузы с по формуле
    4. Вывод значения длины гипотенузы.
    5. Конец алгоритма