Какими способами достигается безусловная электробезопасность медицинских изделий

ГОСТ 12.2.025-76 Система стандартов безопасности труда (ССБТ). Изделия медицинской техники. Электробезопасность. Общие технические требования и методы испытаний (с Изменениями N 1, 2, 3)

Система стандартов безопасности труда

ИЗДЕЛИЯ МЕДИЦИНСКОЙ ТЕХНИКИ

Общие технические требования и методы испытаний

Occupational safety standards system. Medical equipment.
Electrical safety. General technical requirements and test methods

Дата введения 1982-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством медицинской промышленности

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.12.76 N 2951

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

5. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

6. ИЗДАНИЕ (апрель 2001 г.) с Изменениями N 1, 2, 3, утвержденными в декабре 1981 г., июне 1986 г., июне 1991 г. (ИУС 3-82, 9-86, 10-91)

Настоящий стандарт распространяется на изделия медицинской техники — аппараты, приборы, оборудование и инструменты (в дальнейшем — изделия), содержащие электрические цепи и рассчитанные на питание от внешнего или внутреннего источника электрического тока.

Стандарт устанавливает общие требования электробезопасности, предъявляемые к изделиям медицинской техники с целью обеспечения защиты пациента и обслуживающего персонала от поражения электрическим током, а также методы испытаний на соответствие этим требованиям. Все требования настоящего стандарта являются обязательными.

Стандарт не распространяется на:

рентгеновские медицинские аппараты по ГОСТ 26140 и изделия с источниками ионизирующих излучений;

специальное технологическое оборудование медицинской промышленности;

транспортные средства, на которые монтируются изделия медицинской техники;

изделия медицинской техники, медико-технические требования (МТТ) на которые утверждены после 01.01.91, а при отсутствии МТТ — на изделия, разработка которых начата после 01.01.91.

Источник

Какими способами достигается безусловная электробезопасность медицинских изделий

Система стандартов безопасности труда

ИЗДЕЛИЯ МЕДИЦИНСКОЙ ТЕХНИКИ

Общие технические требования и методы испытаний

Occupational safety standards system. Medical equipment.
Electrical safety. General technical requirements and test methods

Дата введения 1982-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством медицинской промышленности

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.12.76 N 2951

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

5. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

6. ИЗДАНИЕ (апрель 2001 г.) с Изменениями N 1, 2, 3, утвержденными в декабре 1981 г., июне 1986 г., июне 1991 г. (ИУС 3-82, 9-86, 10-91)

Настоящий стандарт распространяется на изделия медицинской техники — аппараты, приборы, оборудование и инструменты (в дальнейшем — изделия), содержащие электрические цепи и рассчитанные на питание от внешнего или внутреннего источника электрического тока.

Стандарт устанавливает общие требования электробезопасности, предъявляемые к изделиям медицинской техники с целью обеспечения защиты пациента и обслуживающего персонала от поражения электрическим током, а также методы испытаний на соответствие этим требованиям. Все требования настоящего стандарта являются обязательными.

Стандарт не распространяется на:

рентгеновские медицинские аппараты по ГОСТ 26140 и изделия с источниками ионизирующих излучений;

специальное технологическое оборудование медицинской промышленности;

транспортные средства, на которые монтируются изделия медицинской техники;

изделия медицинской техники, медико-технические требования (МТТ) на которые утверждены после 01.01.91, а при отсутствии МТТ — на изделия, разработка которых начата после 01.01.91.

(Измененная редакция, Изм. N 3).

1. КЛАССИФИКАЦИЯ

1.1. Изделия с внешним питанием в зависимости от способа защиты пациента и обслуживающего персонала от поражения электрическим током подразделяются на четыре класса:

I — изделия, которые в дополнение к основной изоляции имеют приспособление, представляющее собой зажим у изделий с постоянным присоединением к сети или контакт у изделий с сетевым шнуром с вилкой и служащее для присоединения доступных для прикосновения металлических частей к внешнему заземляющему устройству (черт.1, приложение 1);

0I — изделия, которые имеют для подключения к сети сетевой шнур (или кабель) с вилкой без заземляющих контактов и которые в дополнение к основной изоляции имеют зажим для присоединения доступных для прикосновения металлических частей к внешнему заземляющему устройству (черт.2, приложение 1);

II — изделия, которые, кроме основной изоляции, имеют и дополнительную (черт.3, приложение 1);

III — изделия, которые рассчитаны для питания от изолированного источника тока с переменным напряжением не более 24 В или с постоянным напряжением не более 50 В и не имеют внешних или внутренних цепей с более высоким напряжением (черт.4, приложение 1).

1. Изделия классов I и 0I могут иметь части, выполненные по классам II или III, а изделия класса II — выполненные по классу III.

2. Здесь и далее, если специально не указано, имеется ввиду действующее значение напряжения и тока.

3. Если изделие для подзарядки встроенного источника питания рассчитано на подключение к внешнему источнику питания, оно относится к изделиям с внешним питанием.

4. Изделия класса II вместо основной и дополнительной изоляции могут иметь усиленную изоляцию.

5. Изделия классов II и III не имеют приспособления для защитного заземления, но могут иметь зажим или контакт для рабочего заземления или зажим для соединения с системой выравнивания потенциалов.

Читайте также:  Металлы способы получения металлов это

1.2. Изделия в зависимости от степени защиты от поражения электрическим током подразделяются на четыре типа:

Н — имеющие нормальную степень защиты;

В — имеющие повышенную степень защиты;

BF — имеющие повышенную степень защиты и изолированную рабочую часть;

CF — имеющие наивысшую степень защиты и изолированную рабочую часть.

1.3. Изделия в зависимости от характера связи с пациентом подразделяются на:

изделия без рабочей части;

изделия с рабочей частью, не имеющей электрического контакта с сердцем;

изделия с рабочей частью, имеющей электрический контакт с сердцем;

изделия без рабочей части, предназначенные для подключения к изделиям с рабочей частью.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1.1. Изделия должны быть так сконструированы и изготовлены, чтобы не возникало опасности поражения электрическим током как в нормальном их состоянии, так и при единичном нарушении.

2.1.2. Сетевая цепь изделий с внешним питанием должна быть снабжена, кроме основной изоляции, также дополнительным средством защиты по классам I, 0I, II или III.

Примечание. Изготовление изделий класса 0I допускается только по требованию потребителя.

2.1.3. Доступные для прикосновения металлические части изделий классов I или 0I должны быть соединены с зажимом или контактом защитного заземления.

Требование не распространяется на:

части, имеющие двойную или усиленную изоляцию;

части, отделенные от находящихся под напряжением частей металлической заземленной деталью;

части, которые при нарушении основной изоляции могут оказаться под переменным напряжением не более 24 В или постоянным напряжением не более 50 В, источник которых изолирован от сетевой цепи не менее, чем двойной или усиленной изоляцией.

2.1.4. Доступные для прикосновения части изделий класса II должны иметь двойную или усиленную изоляцию по отношению к сетевой цепи.

2.1.5. Изделия класса III должны быть рассчитаны на питание от внешнего источника с переменным напряжением, не превышающим 24 В, или с постоянным напряжением, не превышающим 50 В, и не должны иметь внешних или внутренних цепей с более высоким напряжением.

Для включения в сеть изделий класса III должен применяться разделяющий понижающий трансформатор с обмоткой низшего напряжения, изолированной от сетевой обмотки двойной или усиленной изоляцией, а от корпуса трансформатора и от земли не менее чем основной изоляцией. Переносный разделяющий понижающий трансформатор должен допускать включение только одного изделия.

При использовании для питания изделий класса III химических источников тока последние не должны иметь соединения с сетью и землей.

(Измененная редакция, Изм. N 2).

2.1.6. Изделия типов BF и CF должны иметь рабочую часть, изолированную от доступных для прикосновения металлических частей.

2.1.7. Изделия с внешним питанием, рассчитанные для использования в помещениях, не предназначенных для медицинских целей, и имеющие рабочую часть, предназначенную для электрического контакта с телом пациента, должны изготавливаться по классу II или III.

Примечание. По требованию потребителя допускается изготавливать такие изделия по классу I или 0I только по типу BF.

2.1.8. Изделия без рабочей части должны изготавливаться по типу Н или В.

По типу Н допускается изготавливать изделия, находящиеся при эксплуатации вне пределов досягаемости пациента (лабораторные изделия, стерилизаторы и др.).

Изделие с рабочей частью, не имеющей электрического контакта с сердцем, а также подключаемые к ним изделия, должны изготавливаться по типу В, BF или CF.

Изделия с рабочей частью, не имеющей электрического контакта с сердцем, предназначенные для лечебного воздействия на пациента постоянным электрическим током или током низкой частоты должны изготавливаться по типу BF или CF.

Изделия с рабочей частью, имеющей электрический контакт с сердцем, а также подключаемые к ним изделия, должны изготавливаться по типу CF.

1. Изделия типа CF могут быть класса III, если они рассчитаны для питания только источника, входящего в состав изделия.

2. Требование к типу подключаемых изделий не предъявляется, если для их подключения применяются специальные разделительные устройства, обеспечивающие защиту пациента и обслуживающего персонала от поражения электрическим током в соответствии с настоящим стандартом. Требования к таким устройствам должны указываться в стандартах или технических условиях на конкретные изделия.

(Измененная редакция, Изм. N 2).

2.1.9. Рабочая часть изделий должна быть электрически изолирована от неотносящихся к ней находящихся под напряжением частей.

Примечание. Соединение рабочей части изделия с неотносящимися к ней находящимися под напряжением частями через вакуумные промежутки электронных ламп и полупроводниковые приборы не допускается.

2.1.10. Номинальное напряжение питания изделий с внешним питанием не должно превышать 380 В, при этом в сетевой цепи напряжение относительно земли не должно превышать 250 В.

Номинальное напряжение питания изделий с внешним питанием, находящихся во время эксплуатации в руке, не должно превышать 250 В.

2.1.11. Рабочая часть изделий, механически соединенная с валом электродвигателя, должна быть электрически изолирована от вала дополнительной изоляцией.

Требование не предъявляется, если: напряжение обмоток электродвигателя и цепей, соединенных с ними, не превышает 24 В переменного напряжения или 50 В постоянного напряжения и они имеют двойную или усиленную изоляцию по отношению к сетевой цепи;

рабочая часть изделий класса I или 0I соединена с зажимом или контактом защитного заземления.

2.1.12. Двух- и многополюсные вилки изделий не должны входить в непредназначенные для них розетки изделия, если при этом могут быть нарушены требования настоящего стандарта.

2.1.13. Покупные элементы, имеющие согласно стандартам или техническим условиям на эти элементы более низкие требования к их изоляции, чем предусмотренные настоящим стандартом, допускается применять при изготовлении изделий, если при этом не нарушаются требования стандартов и технических условий на эти элементы и настоящего стандарта — на изделие.

Читайте также:  Лучший способ сделать деньги

2.2.1. Ток утечки изделий не должен превышать значений, указанных в табл.1.

Источник

Какими способами достигается безусловная электробезопасность медицинских изделий

ГОСТ P 50326-92
(МЭК 513-76)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОСНОВНЫЕ ПРИНЦИПЫ БЕЗОПАСНОСТИ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ, ПРИМЕНЯЕМОГО В МЕДИЦИНСКОЙ ПРАКТИКЕ

Basic aspects of the safety philosophy of electrical equipment used in medical practice

Дата введения 1993-01-01

1. ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом по стандартизации медицинских приборов и аппаратов (ТК 11)

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 07.10.92 N 1321

Настоящий стандарт подготовлен методом прямого применения стандарта МЭК 513-76 «Основные принципы безопасности электрического оборудования, применяемого в медицинской практике» и полностью ему соответствует

3. Срок проверки — 1997 г., периодичность проверки — 5 лет

4. ВВЕДЕН ВПЕРВЫЕ

1. ВВОДНАЯ ЧАСТЬ

Настоящий стандарт рассматривает меры обеспечения безопасности пациента и оператора при эксплуатации медицинского электрического оборудования (далее — оборудование).

Все требования стандарта являются обязательными.

Причинами, вследствие которых оборудование в медицине может вызвать серьезные опасности, являются:

— энергии, вырабатываемые при нормальном функционировании оборудования;

— энергии, вырабатываемые в результате ошибочных начальных условий;

— прекращение функционирования оборудования, если состояние пациента зависит от его работоспособности (оборудование для жизнеобеспечения) или метод диагностики (лечения) не позволяет прервать процесс.

Указанные опасности могут угрожать пациенту, оператору, обслуживающему персоналу, а также оборудованию или установкам.

Данные опасности могут быть вызваны:

1) различными видами электрической энергии, например, постоянным электрическим током, проходящим через тело пациента, или преобразованиями электрической энергии в такие формы, как радиация, ультразвуковая или высокочастотная энергия, или ускоренные частицы атома;

2) механическими силами, возникшими вследствие неправильной эксплуатации оборудования, нарушений его функционирования в результате электрических или механических повреждений, отсутствия предохранительных приспособлений, наличия опасных поверхностей, углов или острых краев, неоднородностей, выступов или т.п.;

3) высокочастотными помехами, которые могут нарушать автоматические процессы, регистрацию диагностических данных или лечение;

4) избыточной температурой поверхностей, могущей привести к ожогу или стрессу;

5) пожаром, если повреждение оборудования приводит к осаждению расплавленного материала, горению электропроводки и других окружающих объектов;

6) опасностями химических поражений в результате эмиссии химически агрессивных, ядовитых или горючих жидкостей или газов, или контакта с биологически опасными материалами;

7) ошибками при замене отдельных частей оборудования, неправильной последовательностью операций, нежелательным появлением выходного сигнала и т.п.;

8) повреждением компонентов оборудования, предназначенного для жизнеобеспечения пациента;

9) повреждением источника питания или другими нарушениями в окружающей обстановке.

2. БЕЗОПАСНОСТЬ ОБОРУДОВАНИЯ

Требования безопасности оборудования рассматривались во многих национальных, региональных и международных стандартах. Однако оборудование, применяемое в медицине, требует рассмотрения некоторых специфически важных аспектов:

пациент может быть исключительно чувствителен к опасностям из-за того, что не знает о них, неспособен защититься от них, а также из-за чувствительности к внешним воздействиям вследствие метода лечения, например, путем нарушения его природных защитных барьеров.

Жизнь пациента может зависеть от работы оборудования; в таких случаях функциональная надежность оборудования и установок являются факторами безопасности.

В некоторых случаях неоднократное облучение врача, который ставит диагноз или лечит больных, может стать причиной опасности.

Человек способен поглотить ограниченное количество энергии различных видов. Превышение пределов, установленных экспериментально, может привести к ущербу для здоровья или смерти. В последнее время распространено мнение, что человека следует защищать даже от безвредных, но неприятных ощущений, которых можно избежать, не влияя на процесс лечения.

Количество энергии, подаваемой пациенту, определяет врач. Однако калибровка и точность индикации количества энергии должны быть гарантированы работой оборудования, а номинальная мощность не должна намного превышать максимальной величины, необходимой для лечения, на которую рассчитано оборудование.

Врач или персонал, работающий с оборудованием, должен иметь определенные навыки управления оборудованием и представлять себе возможные опасности при его эксплуатации.

В особых случаях необходимо повесить предупреждающие надписи или напечатать их в инструкции по эксплуатации оборудования. Цель предупреждающих надписей — исключить неправильное использование и серьезные ошибки при эксплуатации оборудования. Некоторых невольных и типичных ошибок можно избежать, используя соответствующие приспособления для контроля связи или соединения.

Рассмотрение перечисленных факторов и внимательное изучение действующих стандартов и соответствующей литературы позволяют прийти к заключению, что безопасность эксплуатации оборудования в общем случае должна включать не только вопросы, связанные непосредственно с самим оборудованием, но и предусматривать сочетание мер по обеспечению безопасности оборудования электрических установок зданий, включая эксплуатацию и применение. Безопасность — понятие относительное, и абсолютная безопасность, хотя и является конечной целью, но никогда не может быть достигнута. Правильно применяемые меры безопасности не должны ограничивать функциональные возможности оборудования. Более того, используемые технические решения должны обеспечить соответствующую защиту пациента, оператора и обслуживающего персонала.

Электрическая безопасность может быть обеспечена:

— средствами, объединенными с оборудованием (безусловная электробезопасность);

— дополнительными мерами защиты (условная электробезопасность).

Если перечисленные выше меры не обеспечиваются, то безопасность оборудования может быть предусмотрена правилами его размещения и применения.

Оборудование характеризуется сроком эксплуатации, который определяется его индивидуальными качествами, воздействиями условий внешней среды, частотой его применения и контролем за эксплуатацией. Некоторые неисправности можно предотвратить при помощи периодических осмотров и соответствующего обслуживания. Возникновение неисправностей, причина которых может остаться невыявленной, можно предотвратить, используя оборудование соответствующей конструкции с достаточно высоким коэффициентом безопасности или защитные устройства. Понятие коэффициента безопасности включает в себя не только механические и электрические факторы, но также эффект использования и износа оборудования, знание способов его производства и условий транспортирования и хранения.

Читайте также:  Способы эвакуации от себя

Полагают, что вероятность возникновения в одно и то же время двух независимых друг от друга неисправностей очень мала. Таким образом, возможно существование защитной системы, в которой любая первая неисправность может быть обнаружена до второй неисправности. Применение этих принципов к различным типам опасностей сводится к следующему анализу.

2.1. Опасность поражения электрическим током

Меры безопасности от поражения электрическим током при работе с оборудованием рассмотрены во всех существующих стандартах на электрическое оборудование. Известно, что источником данного вида опасности служит разность потенциалов, обычно возникающая между землей и одним или более проводниками электрической системы.

Условия, при которых пациент или оператор заземлены или соединены с землей через низкое сопротивление, или контакт пациента или оператора с проводником источника электропитания (или с любым другим проводником, соединенным с ним) могут привести к опасности поражения электрическим током (рис.1).

Рис.1. Опасность, вызванная контактом с сетью

Размеры опасности зависят от напряжения, сопротивления тела пациента и пути электрического тока через него. Величину опасности данного вида можно снизить, удовлетворяя основному требованию: все живое должно быть защищено от случайного контакта.

Обычно такая защита достигается основной предохранительной изоляцией, которую рассматривают как единственную меру защиты. Однако в целях исключения возможности возникновения опасности после первой же аварии единственную меру защиты нельзя считать достаточной (даже в случае, когда ток утечки в нормальных условиях не превышает допустимую величину).

Стандартные методы, используемые во всем электрическом оборудовании для защиты при повреждении первичной изоляции, можно применять к медицинскому оборудованию:

класс I — заземление доступных проводящих частей, которые могут быть оголены при повреждении изоляции;

класс II — двойная изоляция;

класс III — сочетание разделения цепей и сверхнизкого напряжения.

Принцип двойной защиты исключает оборудование только с основной изоляцией (класс 0). Этот принцип применяют не только к части источника питания, но также ко всем другим частям оборудования. Допустимый уровень тока утечки снижен, и это означает, что проводящая часть, несущая напряжение, считается «находящейся под напряжением», если можно получить ток утечки, превышающий допустимый.

На частях, доступ к которым возможен без использования инструмента, должно быть напряжение на землю, не превышающее 4 В переменного среднего квадратического значения или 30 В постоянного тока, в случае неисправности основной предохранительной изоляции на доступной проводящей части. Однако существует ограничение для случаев, когда проводящее соединение между такой частью и пациентом нежелательно.

Для оборудования актуальной проблемой является сочетание следующих факторов:

— повышенная чувствительность, вызванная соединением низкого сопротивления с сердцем пациента или непосредственным окружением;

— уровень плотности тока, который может вызывать фибрилляцию желудочка или значительное ослабление пульсации;

— продолжительный период, в течение которого пациенты могут находиться в тесном контакте с оборудованием;

— предотвращение случайных ожогов при хирургических операциях с применением токов высокой частоты.

Существуют два пути для токов утечки:

— от сети по сопротивлению и емкости изоляции через цепь, соединенную с пациентом, и через пациента на землю (рис.2).

Рис.2. Ток утечки на пациента

1 — накладываемая часть или цепь пациента, 2 — ток утечки

Данный ток называется «током утечки на пациента», и, если пациент заземлен, ток данного вида протекает постоянно;

— от основной цепи по сопротивлению и емкости изоляции к доступным частям оборудования. В нормальных условиях данный вид тока почти полностью будет протекать по защитному заземленному проводнику на землю, если оборудование заземлено. Однако часть тока может идти через пациента, который прикасается к доступным частям, заземленным прямо или косвенно. Такой ток называют «током утечки на корпус». В обычных условиях ток рассматриваемого вида очень мал и протекает он только в том случае, когда одновременно выполнены следующие необходимые условия (рис.3):

Рис.3. Ток утечки на корпус

2 — пациент, 3 — ток утечки

— пациент заземлен (первое условие);

— происходит случайное электрическое соединение между доступными частями оборудования с цепью пациента, в которой пациент заземлен, либо с пациентом, цепь которого заземлена (второе условие);

— ток, возникающий в обычных условиях, может превысить допустимое значение только в случае повреждения одного из защитных средств (третье условие).

Заземление пациента часто происходит случайно посредством людей или предметов.

Ток, протекающий через защитный заземленный проводник оборудования класса I, называют током утечки на землю (рис.4). В аварийном режиме ток утечки на корпус в оборудовании рассматриваемого класса может полностью или частично состоять из тока утечки на землю.

Необходимо иметь в виду, что оборудование класса I может иметь корпус полностью или частично проводящий; по определению АКОС (консультативный комитет по безопасности) — корпус полностью изолированный или устройство из проводящих внутренних частей, полностью отделяющее основную часть от всех других частей и соединенное с защитным заземлением. При указании возможных аварийных условий необходимо учитывать конструкцию и качество различных защитных средств. Так усиленную или двойную изоляцию можно считать защитной от пробоя всей изоляции, непрерывность защитного заземленного соединения — надежной мерой предосторожности, если оно фиксировано или постоянно смонтировано, а также если защитное заземленное соединение удвоено или контролируется.

Рис.4. Ток утечки на землю

EQ1-EQ2 — оборудование; R1, R2 — сопротивления защитных заземленных соединений; IE1, IE2 — токи утечки на землю; Е — напряжение, вызванное разностями в сопротивлении защитных заземленных соединений или токами утечки на землю; РСЕР — центральная эквипотенциальная точка пациента

Источник

Оцените статью
Разные способы