Какими двумя способами можно получить хлорид

Хлорид натрия: способы получения и химические свойства

Хлорид натрия NaCl — соль щелочного металла натрия и хлороводородной кислоты. Белое кристаллические вещество. Плавится и кипит без разложения. Умеренно растворяется в воде (гидролиза нет);

Относительная молекулярная масса Mr = 58,44; относительная плотность для ж. и тв. состояния d = 2,165; tпл = 800,8º C; tкип = 1465º C;

Способ получения

1. Хлорид натрия можно получить путем взаимодействия натрия и разбавленной хлороводородной кислоты, образуются хлорид натрия и газ водород:

2Na + 2HCl = 2NaCl + H2↑.

2. При комнатной температуре, в результате взаимодействия натрия и хлора, образуется хлорид натрия:

2Na + Cl2 = 2NaCl

3. Концентрированный раствор гидроксида натрия реагирует с концентрированным раствором хлорида аммония при кипении. При этом образуются хлорид натрия, газ аммиак и вода:

NaOH + NH4Cl = NaCl + NH3↑ + H2O

4. При взаимодействии с разбавленной и холодной хлороводородной кислотой пер окси д натрия образует хлорид натрия и пероксид водорода:

5. Разбавленная хлороводородная кислота реагирует с гидроксидом натрия . Взаимодействие хлороводородной кислоты с гидроксидом натрия приводит к образованию хлорида натрия и воды:

NaOH + HCl = NaCl + H2O

6. В результате взаимодействия сульфата натрия и хлорида бария образуется сульфат бария и хлорид натрия:

Качественная реакция

Качественная реакция на хлорид натрия — взаимодействие его с нитратом серебра, в результате реакции происходит образование белого творожного осадка:

1. При взаимодействии с нитратом серебра , хлорид натрия образует нитрат натрия и осадок хлорид серебра:

NaCl + AgNO3 = NaNO3 + AgCl↓

Химические свойства

1. Хлорид натрия вступает в реакцию со многими сложными веществами :

2.1. Хлорид натрия взаимодействует с кислотами :

2.1.1. Хлорид натрия в твердом состоянии при кипении реагирует с концентрированной серной кислотой с образованием сульфата натрия и газа хлороводорода:

а если температуру опустить до 50º С, то твердый хлорид натрия и концентрированная серная кислота образуют гидросульфат натрия и газ хлороводород:

2.2. Хлорид натрия способен вступать в реакцию обмена со многими солями :

2.2.1. Твердый хлорид натрия реагирует с концентрированной и горячей серной кислотой и твердым перманганатом калия . Взаимодействие хлорида натрия с перманганатом калия и серной кислотой приводит к образованию сульфата марганца, натрия, калия, газа хлора и воды:

2.2.2. Хлорид натрия взаимодействует с гидросульфатом натрия при температуре 450–800º C . При этом образуются сульфат натрия и хлороводородная кислота:

2.2.3. При взаимодействии холодного хлорида натрия с насыщенным нитритом серебра выделяются нитрат натрия и осадок хлорид серебра:

NaCl + AgNO2 = NaNO2 + AgCl↓

Источник

Читайте также:  Самые быстрые способы получить деньги

Хлорид бария: способы получения и химические свойства

Хлорид бария BaCl2 — соль щелочноземельного металла бария и хлороводородной кислоты. Белый, плавится без разложения. Хорошо растворяется в воде (гидролиза нет).

Относительная молекулярная масса Mr = 208,23; относительная плотность для тв. и ж. состояния d = 3,856; tпл = 961º C;

Способ получения

1. Хлорид бария можно получить путем взаимодействия бария и хлора :

2. В результате взаимодействия карбоната бария и разбавленной соляной кислоты образуется хлорид бария, углекислый газ и вода:

3. Гидроксид бария вступает в реакцию с соляной кислотой с образованием хлорида бария и воды:

Качественная реакция

Качественная реакция на хлорид бария — взаимодействие его с нитратом серебра, в результате реакции происходит образование белого творожного осадка:

1. При взаимодействии с нитратом серебра , хлорид бария образует нитрат бария и осадок хлорид серебра:

Химические свойства

1. Хлорид бария вступает в реакцию со многими сложными веществами :

1.1. Хлорид бария реагирует с кислотами:

1.1.1. Твердый хлорид бария реагирует с концентрированной серной кислотой при кипении , образуя сульфат бария и газ хлороводород :

1.2. Хлорид бария вступает в взаимодействие с солями:

1.2.1. В результате реакции между хлоридом бария и концентрированным раствором карбоната натрия образуется карбонат бария и хлорид натрия:

1.2.2. Хлорид бария может реагировать с сульфатом натрия при 800º С с образованием сульфата бария и хлорида натрия:

2. В результате электролиза раствора хлорида бария образуется водород и хлор:

Источник

способы получения Cl2

ромышленные методы
Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

MnO2 + 4HCl —> MnCl2 + Cl2 + 2H2O
В 1867 году Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха. Процесс Дикона в настоящее время используется при рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений.

4HCl + O2 —> 2H2O + 2Cl2
Сегодня хлор в промышленных масштабах получают вместе с гидроксидом натрия и водородом путём электролиза раствора поваренной соли:

2NaCl + 2H2О —> H2 + Cl2 + 2NaOH
Анод: 2Cl(-) — 2е (-) —> Cl2(0)
Катод: 2H2O + 2e(-) —> H2 + 2OH(-)
Так как параллельно электролизу хлорида натрия проходит процесс электролиз воды, то суммарное уравнение можно выразить следующим образом:

1,80 NaCl + 0,50 H2O —> 1,00 Cl2 + 1,10 NaOH + 0,03 H2

Лабораторные методы
В лабораториях для получения хлора обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия) :

2KMnO4 + 16HCl —> 2KCl + 2MnCl2 + 5Cl2 +8H2O
K2Cr2O7 + 14HCl —> 3Cl2 + 2KCl + 2CrCl3 + 7H2O

3 моль хл
4H⁺Cl⁻+Mn⁺⁴O₂⁻²=Cl₂°+Mn⁺²Cl₂⁻¹+2H₂⁺O⁻²
1моль 22,4л
х = 22,4*3/1=67,2л

2Сl⁻-2e=Сl₂° 1 в-ль, ок-ние
Mn⁺⁴+2e=Mn⁺² 1 ок-ль, вос-ние
Неограниченные возможности для обучения без рекламы со Знаниями Плюс

Источник

Хлорид меди (II), характеристика, свойства и получение, химические реакции

Хлорид меди (II), характеристика, свойства и получение, химические реакции.

Хлорид меди (II) – неорганическое вещество, имеет химическую формулу CuCl2.

Краткая характеристика хлорида меди (II):

Хлорид меди (II) – неорганическое вещество жёлто-бурого (по некоторым данным – тёмно-коричневого) цвета.

Читайте также:  Наука это способ наблюдения

Химическая формула хлорида меди (II) CuCl2.

Хлорид меди (II) – неорганическое химическое соединение, соль соляной кислоты и меди.

Хорошо растворяется в воде, метаноле, этаноле, пропаноле, изопропаноле, ацетоне, бензиловом спирте, изоамиловом спирте. Плохо растворим в диэтиловом эфире.

Растворяясь в воде, образует растворы различного цвета:

– темно-коричневого цвета (концентрированный раствор CuCl2),
– зеленого цвета (разбавленный раствор CuCl2),
– голубого цвета (сильно разбавленный раствор CuCl2).

С водой хлорид меди (II) образует кристаллогидраты с общей формулой CuCl2·nH2O, где n может быть 1, 2, 3 или 4: гидрат хлорида меди (II) CuCl2·H2O, дигидрат хлорида меди (II) CuCl2·2H2O, тригидрат хлорида меди (II) CuCl2·3H2O и тетрагидрат хлорида меди (II) CuCl2·4H2O.

Образование кристаллогидратов зависит от температуры кристаллизации. При температуре ниже 117 °C образуется CuCl2·H2O, при ниже 42 °С – CuCl2·2H2O, при ниже 26 °С – CuCl2·3H2O, при ниже 15 °С – CuCl2·4H2O.

Хлорид меди (II) является парамагнитным веществом.

Хлорид меди (II) токсичен.

В природе хлорид меди (II) встречается в виде минералов толбачита (CuCl2) и эрнохальцита (CuCl2·2H2O).

При работе с медью двухлористой 2-водной (CuCl2·2H2O) следует применять индивидуальные средства защиты (респиратор, защитные очки, резиновые перчатки), а также соблюдать меры личной гигиены. Не допускать попадания препарата внутрь организма. Помещения, в которых производятся работы с медью двухлористой 2-водной, должны быть оборудованы эффективной приточно-вытяжной вентиляцией. Испытания препарата в лаборатории проводят в вытяжном шкафу (см. ГОСТ 4167-74 Реактивы. Медь двухлористая 2-водная. Технические условия).

Медь двухлористая 2-водная ядовита, при попадании внутрь организма вызывает отравления, на кожу и слизистые оболочки – профессиональные заболевания кожи (см. ГОСТ 4167-74 Реактивы. Медь двухлористая 2-водная. Технические условия).

Физические свойства хлорида меди (II):

Наименование параметра: Значение:
Химическая формула CuCl2
Синонимы и названия иностранном языке дихлорид меди (рус.)

хлористая медь (рус.)

двухлористая медь (рус.)

copper (II) chloride (англ.) Тип вещества неорганическое Внешний вид жёлто-бурые (тёмно-коричневые) моноклинные кристаллы Цвет жёлто-бурый (по некоторым данным – тёмно-коричневый) Вкус —* Запах — Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м 3 3 386 Плотность (состояние вещества – твердое вещество, при 20 °C), г/см 3 3,386 Температура кипения, °C 993 Температура плавления, °C 498 Молярная масса, г/моль 134,452 Гигроскопичность гигроскопичен Растворимость в воде (20 o С), г/100 г 74,5

Получение хлорида меди (II):

В промышленности хлорид меди (II) получают хлорированием сульфида меди и с помощью хлорирующего обжига. В лабораторных условиях получают также и другими способами.

Хлорид меди (II) получают в результате следующих химических реакций:

1. взаимодействия сульфида меди и хлора (хлорирование сульфида меди):

CuS + Cl2 → CuCl2 + S (t = 300-400 °C).

Используется для получения хлорида меди (II) в промышленности.

2. взаимодействия сульфида меди, хлорида натрия и кислорода (хлорирующий обжиг):

Используется для получения хлорида меди (II) в промышленности.

3. взаимодействия металлической меди и хлора:

4. взаимодействия оксида меди и соляной кислоты.

5. взаимодействия гидроксида меди и соляной кислоты.

6. взаимодействия карбоната меди и соляной кислоты.

7. растворением меди в царской водке.

Химические свойства хлорида меди (II). Химические реакции хлорида меди (II):

Химические свойства хлорида меди (II) аналогичны свойствам хлоридов других металлов . Поэтому для него характерны следующие химические реакции:

1. реакция взаимодействия хлорида меди (II) и алюминия:

В результате реакции образуются медь и хлорид алюминия.

2. реакция взаимодействия хлорида меди (II) и цинка:

В результате реакции образуются медь и хлорид цинка.

3. реакция взаимодействия хлорида меди (II) и железа:

В результате реакции образуются медь и хлорид железа (II).

4. реакция взаимодействия хлорида меди (II) и меди:

В результате реакции образуется хлорид меди (I).

5. реакция взаимодействия хлорида меди (II) и палладия:

В результате реакции образуются хлорид палладия и хлорид меди (I).

6. реакция взаимодействия хлорида меди (II) и фтора:

В результате реакции образуются фторид меди (II) и хлор.

7. реакция взаимодействия хлорида меди (II) и гидроксида натрия :

CuCl2 + 2NaOH → CuO + H2O + 2NaCl (t°),

В результате реакции образуются в первом случае – хлорид натрия, оксид меди (II) и вода, во втором случае – гидроксид меди и хлорид натрия. В ходе реакций используется разбавленный раствор гидроксида натрия. Реакция в первом случае протекает при кипении. В ходе второй реакции образуется также примесь – гидроксид-хлорид меди (II).

8. реакция взаимодействия хлорида меди (II) и нитрата серебра:

В результате реакции образуются нитрат меди (II) и хлорид серебра.

9. реакция взаимодействия хлорида меди (II) и бромида бора:

В результате реакции образуются бромид меди (II) и хлорид бора.

10. реакция взаимодействия хлорида меди (II), сульфита натрия и гидроксида натрия:

В результате реакции образуются хлорид меди (I), сульфат натрия, хлорид натрия и вода. В ходе реакции используется разбавленный раствор гидроксида натрия.

11. реакция электролиза водного раствора хлорида меди (II):

В результате реакции образуются медь и хлор .

12. реакция термического разложения дигидрата хлорида меди (II):

В результате реакции образуются хлорид меди (II) и вода .

13. реакция термического разложения хлорида меди (II):

2CuCl2 → 2CuCl + Cl2 (t = 110-150 °C).

В результате реакции образуются хлорид меди (I) и хлор.

Применение и использование хлорида меди (II):

Хлорид меди (II) используется во множестве отраслей промышленности и для бытовых нужд:

– в цветной металлургии для омеднения металлов;

– в нефтехимической промышленности как катализатор крекинга, декарбоксилирования;

– в химической промышленности как катализатор для получения хлора;

– в органическом синтезе в качестве катализатора для синтеза органических соединений, в т.ч. в Ватер-процессе (процесс получения ацетальдегида прямым окислением этилена );

– в качестве протравы при крашении тканей .

Источник

Читайте также:  Sulsen шампунь способ применения
Оцените статью
Разные способы