Каким способом производится регулирование работы теплообменного аппарата

Лекция №12. Регулирование кожухотрубных теплообменников

Рассмотрим теплообменники с изменяющимся агрегатным состоянием веществ. Особенность этих теплообменников как объектов регулирования состоит в том, что при постоянном давлении /у и отсутствии переохлаждения образующегося конденсата (или V\_y перегрева образующегося пара) температура жидкой и паровой фаз одинакова и по ней нельзя судить об интенсивности процесса испарения или конденсации. В этом случае основным показателем процесса теплообмена является уровень жидкой фазы.

Постоянство температуры в той части теплообменника, где происходит конденсация или испарение вещества, позволяет рассматривать ее как звено с сосредоточенными параметрами. Ту часть теплообменника, в которой происходит лишь нагрев или охлаждение вещества и температура изменяется по длине теплообменника, следует рассматривать как звено с распределенными параметрами.

Рис. 1. Принципиальная схема парожидкостного теплообменника.

Для теплообменников этого типа задача регулирования и выбор системы автоматизации диктуются назначением аппарата. В теплообменниках, предназначенных для нагрева вещества до заданной температуры за счет тепла конденсации греющего пара (или для охлаждения вещества за счет отбора тепла испаряющейся жидкостью), задачей регулирования является стабилизация температуры технологического потока на выходе из теплообменника. В испарителях или конденсаторах, предназначенных для испарения или конденсации технологического потока, задача регулирования сводится к поддержанию материального баланса по технологическому потоку.

Рассмотрим особенности динамических характеристик этого типа теплообменников на примере кожухотрубного парожидкостного теплообменника, предназначенного для нагрева жидкости от температуры до (рис. 1). Примем, что пар — насыщенный, а конденсат отводится при температуре конденсации.

Рассмотрим несколько вариантов систем регулирования выходной температуры технологического потока в паровых теплообменниках на примере парожидкостного теплообменника.

Вариант 1. Одноконтурная замкнутая АСР (рис. 2.45) при использовании ПИ- или ПИД-регулятора гарантирует регулирование температуры без статической ошибки, однако при сильных возмущениях по расходу или температуре жидкости качество переходного процесса может оказаться неудовлетворительным.

Рис. 2. Схема одноконтурной АСР температуры жидкости в парожидкостном теплообменнике.

Вариант 2. Введение динамической компенсации возмущений по или оказывается нецелесообразным, так как теоретические компенсаторы физически нереализуемы, а использование приближенных компенсаторов может оказаться неэффективным. Поэтому на практике ограничиваются статической компенсацией этих возмущений. Примером таких систем является каскадная АСР соотношения расходов Gn/Gx с коррекцией по (рис. 3)

Рис. 3. Каскадная АСР температуры жидкости в парожидкостном теплообменнике (с регулятором соотношения расходов во внутреннем контуре).

Читайте также:  Способы ликвидации открытых фонтанов

Вариант 3. Каскадная система регулирования температуры (или давления) в межтрубном пространстве с коррекцией задания по (рис. 4.) будет эффективной при сильных возмущениях по давлению или температуре греющего пара. Температура (или давление) в кожухе в данном случае играет роль промежуточной координаты, которая быстрее реагирует на эти возмущения, чем выходная температура жидкости.

Рис. 4. Функциональная (а) и структурная (б) схемы каскадной АСР температуры в парожидкостном теплообменнике (с регулятором температуры конденсата во внутреннем контуре): 1 – регулятор температуры жидкости; 2 – регулятор температуры конденсата в кожухе.

Вариант 4. Если требуется высокое качество регулирования, целесообразно применение схемы с байпасированием технологического потока вокруг теплообменника и последующим смешением нагретого и холодного потоков. В этом случае появляется дополнительное управляющее воздействие — распределение потоков Gx и G2. На рис. 5 показан пример системы автоматизации такого теплообменника. Регулятор температуры выполняет вспомогательную функцию— стабилизацию температуры 0″; главная задача — регулирование температуры жидкости после смешения — возлагается на регулятор 2. В такой системе качество регулирования 0ВЫх определяется динамикой второго контура, в котором объект представляет собой практически безынерционное звено, так как при малом объеме камеры смешения постоянная времени процесса смешения практически равна нулю (Рис. 5.).

Рис. 5. Регулирование температуры жидкости в схеме с байпасированием потока вокруг теплообменника:

1 – регулятор температуры жидкости на выходе из теплообменника; 2 – регулятор температуры жидкости после смешения.

Источник

Регулирование типовых тепловых процессов

Теплообменные аппараты классифицируются по виду теплообменной поверхности (с поверхностью из трубок, с плоской поверхностью, с поверхностью непосредственного контакта теплоносителей); по физическому процессу, происходящему с основным технологическим веществом (нагреватели, холодильники, испарители, конденсаторы); по характеру работы во времени (рекуперативные, регенеративные и т. д.) и другим признакам. Поверхностные теплообменники довольно широко используются в химической технологии, поскольку теплоносители в таких аппаратах разделены тепло-передающей поверхностью: в трубчатых теплообменниках — стенки трубок, в пластинчатых теплообменниках — плоские или рифленые листы. Распространенной конструкцией теплообменной аппаратуры трубчатого типа является кожухотрубный теплообменник. Кожу-хотрубные теплообменники делят на теплообменники с неизменяемым агрегатным состоянием веществ, например, теплообменники типа газ—газ, газ—жидкость, жидкость—жидкость, а также теплообменники с изменяющимся агрегатным состоянием веществ (например, паро-газовые, паро-жидкостные теплообменники, испарители, конденсаторы).

Читайте также:  Очистка молока способы очистки

Особенностью теплообменников с изменяющимся агрегатным состоянием веществ, рассматриваемых как объекты регулирования, является равенство температур жидкой и паровой фаз при постоянном давлении и отсутствии переохлаждения образующегося конденсата (перегрева образующегося пара). Поскольку температура жидкой и паровой фаз одинакова, она не может служить показателем процесса испарения или конденсации. Тогда в качестве основного показателя процесса теплообмена выбирают уровень жидкой фазы.

В испарителях или конденсаторах, предназначенных для испарения или конденсации жидкости, задача регулирования сводится к поддержанию материального баланса по технологическому потоку (газу или жидкости).

В кожухотрубных паро-жидкостных теплообменниках, предназначенных для нагревания жидкости до заданной температуры за счет теплоты конденсации греющего пара, основной задачей регулирования является стабилизация температуры жидкости на выходе из теплообменника.

Теперь с учетом выявленных основных возмущающих и управляющих воздействий можно предложить несколько вариантов систем регулирования температуры жидкости на выходе из промышленных кожухотрубных паро-жидкостных теплообменников.

Первый вариант. Для регулирования выходной температуры жидкости без статической ошибки можно применить одноконтурную замкнутую САР с использованием ПИ-регулятора или ПИД-регулятора (рис. 22), изменяющего расход греющего пара. Недостатки такого регулирования: при сильных возмущающих воздействиях по каналам расхода или температуры жидкости на входе в теплообменник качество переходного процесса оказывается неудовлетворительным.

Второй вариант. Если имеют место возмущающие воздействия по каналам расхода или температуре жидкости на входе , то ограничиваются их статической компенсацией. Реализовать такой подход возможно применением каскадной САР соотношения расходов пара и жидкости с коррекцией по третьему параметру — температуре жидкости на выходе теплообменника (рис. 23).

Третий вариант. При сильных возмущающих воздействиях по каналам изменения давления или температуры греющего пара возможно применить каскадную систему регулирования температуры (или давления) в межтрубном пространстве теплообменника с коррекцией задания по (рис. 24). Температура (или давление) в межтрубном пространстве теплообменника — промежуточная координата, значительно быстрее реагирующая на указанные возмущающие воздействия, чем температура жидкости на выходе теплообменника

Рис.22. Одноконтурная замкнутая САР температуры жидкости в кожухотрубном паро-жидко-стном теплообменнике

Рис.23. Каскадная САР температуры жидкости в кожухотрубном паро-жидкостном теплообменнике (с регулятором соотношения расходов во внутреннем контуре)

Рис. 24.Каскадная САР температуры жидкости в кожухотрубном паро-жидкостном теплообменнике (с регулятором температуры конденсата во внутреннем контуре): / — регулятор температуры жидкости на выходе из теплообменника; 2 — регулятор температуры конденсата в кожухе

Читайте также:  Крем хна для волос способ применения

Рис. 25.Регулирование жидкости в схеме кожухо-трубного паро-жидкостного теплообменника с байпасированием холодного потока: / — регулятор температуры жидкости на выходе из теплообменника; 2 — регулятор температуры жидкости после смешения

Четвертый вариант. Чтобы обеспечить высокое качество регулирования температуры, желательно иметь дополнительное управляющее воздействие. Для этого жидкость, поступающую на нагревание, перед теплообменником делят на два потока и . Часть жидкости (поток ) направляют в теплообменник и нагревают до температуры несколько выше заданной. Другая часть жидкости (поток ) минует теплообменник, оставаясь холодной. За теплообменником нагретый и холодный потоки смешиваются для получения жидкости заданной температуры. Таким образом, реализуется схема с байпасированием (рис. 25). В этом случае регулятор температуры / стабилизирует температуру после теплообменника (вспомогательная функция). Регулятор температуры 2 регулирует температуру жидкости после смешения (основная задача). При этом качество регулирования определяется динамикой основного контура, в

котором объект представляет собой безынерционное звено, поскольку постоянная времени процесса смешения нагретой и холодной жидкостей практически равна нулю.

1.3. Регулирование массообменных процессов

К массообменным процессам, получившим наибольшее распространение в химической технологии, относят абсорбцию, ректификацию, экстракцию, кристаллизацию, адсорбцию, сушку. К общим особенностям регулирования массообменных процессов можно отнести то, что в результате проявления различного рода случайных возмущающих воздействий нарушаются материальные и тепловые балансы, изменяются температура и давление, что приводит к нарушению состава и качества получаемых продуктов. Поэтому одной из основных задач регулирования массообменных процессов является задача стабилизации режимных параметров, решение которой позволяет сохранить материальные и тепловые балансы.

Аппараты, в которых осуществляется большинство массообменных процессов, как правило, — крупногабаритные аппараты колонного типа (диаметр таких аппаратов может достигать несколько метров, высота равняется нескольким десяткам метрам), поэтому вполне естественно, что постоянные времени и запаздывание таких аппаратов могут составлять десятки минут. Если для регулирования массообменных процессов использовать одноконтурные системы регулирования, то они будут характеризоваться большой длительностью переходных процессов и большой максимальной ошибкой. Чтобы повысить качество переходных процессов, для регулирования массообменных процессов используют комбинированные САР, для которых характерно введение коррекции по наиболее сильным возмущающим воздействиям, а также каскадные САР, характеризуемые применением дополнительных сигналов из промежуточных точек массообменных аппаратов.

Источник

Оцените статью
Разные способы