- Признаки равенства треугольников
- Первый признак равенства треугольников
- Второй признак равенства треугольников
- Третий признак равенства треугольников
- 3 признак равенства треугольников
- Третий признак равенства треугольников
- Урок 11. Геометрия 7 класс
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Третий признак равенства треугольников»
Признаки равенства треугольников
О чем эта статья:
Первый признак равенства треугольников
Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.
Давайте рассмотрим три признака равенства треугольников.
Теорема 1. Равенство треугольников по двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.
Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.
Значит, происходит совмещение вершин В и В1, С и С1.
Второй признак равенства треугольников
Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.
Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.
AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.
CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.
Вершина B совпадает с вершиной B1.
Третий признак равенства треугольников
Теорема 3. Равенство треугольников по трем сторонам.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Доказательство 3 признака равенства треугольников:
Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.
Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.
Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.
- Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника — такие треугольники равны.
- Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника — такие треугольники равны.
- Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника — такие треугольники тоже равны.
- Если две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника — вы уже догадались сами: эти ребята равны.
- Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.
Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.
Источник
3 признак равенства треугольников
(Третий признак равенства треугольников — по трём сторонам)
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Дано:
Приложим треугольник A1B1C1 к треугольнику ABC так, чтобы
- вершина A1 совместилась с вершиной A,
- вершина B1 совместилась с вершиной B,
- точки C1 и C лежали по разные стороны от прямой AB.
При этом возможны три случая взаимного расположения луча CC1 и угла ACB.
I. Луч CC1 проходит внутри угла ACB.
Проведём отрезок CC1.
По условию AC=A1C1 и BC=B1C1, поэтому треугольники ACC1 и BCC1 — равнобедренные с основанием CC1.
Если к равным углам прибывать равные углы, то получим равные углы:
Таким образом, ∠ACB=∠AC1B.
Точки A1 и A, B1 и B совмещены, то есть ∠AC1B и ∠A1C1B1 — один и тот же угол.
Для треугольников ABC и A1B1C1 имеем:
Следовательно, ΔABC= ΔA1B1C1 (по 1 признаку равенства треугольников).
II. Луч CC1 проходит внутри угла ACB.
Так как AC=A1C1 и BC=B1C1, треугольники ACC1 и BCC1 — равнобедренные с основанием CC1 и ∠ACC1=∠AC1C и ∠BCC1=∠BC1C (как углы при основании).
Если из равных углов вычесть равные углы, то получим равные углы:
III. Луч CC1 совпадает со стороной угла ACB.
По условию BC=B1C1, поэтому треугольник BCC1 — равнобедренный с основанием CC1.
Отсюда ∠C1=∠C (как углы при основании) и ΔABC= ΔA1B1C1 (по 1 признаку равенства треугольников).
Источник
Третий признак равенства треугольников
Урок 11. Геометрия 7 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Третий признак равенства треугольников»
Вспомним первый и второй признаки равенства треугольников.
Первый признак равенства треугольников:
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников:
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сформулируем третий признак равенства треугольников:
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Приложим ∆ АВС к ∆ А1В1С1 таким образом, чтобы вершина А совместилась с вершиной А1, вершина В — с вершиной В1, а вершины С и С1 оказались по разные стороны от прямой А1В1.
Возможны три случая.
Рассмотрим первый случай. Так как по условию теоремы АС=А1С1, ВС=В1С1, то треугольники А1С1С и В1С1С являются равнобедренными. По теореме о свойстве углов равнобедренного треугольника угол 1 равняется углу 2, а угол 3 равняется углу 4. Поэтому ∠А1СВ1=∠А1С1В1.
Получаем, АС=А1С1, ВС=В1С1 и ∠С=∠С1. Следовательно, ∆ АВС= ∆ А1В1С1 по первому признаку равенства треугольников.
Рассмотрим второй случай. Так как по условию теоремы АС=А1С1, то ∆ СА1С1 является равнобедренным. По теореме о свойстве углов равнобедренного треугольника углы при основании С и С1 равны. Можем сказать, что треугольники АВС и А1В1С1 равны по первому признаку равенства треугольников, так как АС=А1С1 и ВС=В1С1 по условию теоремы, а ∠С=∠С1.
И третий случай. По условию теоремы АС=А1С1 и ВС=В1С1. Из этого следует, что треугольники СА1С1 и СВ1С1 являются равнобедренными. Тогда по теореме о свойстве углов при основании равнобедренного треугольника ∠1=∠2 и ∠3=∠4. А следовательно, ∠С=∠С1. Итак, треугольники АВС и А1В1С1 равны по первому признаку равенства треугольников, так как АС=А1С1 и ВС=В1С1 по условию теоремы, а ∠С=∠С1.
Отрезок АС — общее основание равнобедренных треугольников АВС и АDC. Доказать, что треугольники BAD и BCD равны.
Рассмотрим ∆ BAD и ∆ BCD. У этих треугольников сторона АВ=ВС, сторона АD=DC, а сторона BD — общая.
Получаем, что треугольники BAD и BCD равны по третьему признаку равенства треугольников. Что и требовалось доказать.
Два равных отрезка АВ и CD пересекаются в точке Е так, что расстояния AD и СВ равны. Докажите, что АЕ=СЕ.
Соединим точки А и С. И рассмотрим ∆ АВС и ∆ САD. У них сторона АС — общая, АВ=CD по условию, АD=СВ также по условию задачи. Тогда треугольники АВС и САD равны по третьему признаку.
Из равенства треугольников следует, что ∠1=∠2.
Соединив точки В и D аналогично можем доказать, что треугольники СВD и АDB равны, а следовательно, равны и углы 3 и 4.
Тогда можно утверждать, что ∆ СЕВ=∆ АЕD по второму признаку, так как у них ∠1=∠2, ∠3=∠4, а стороны АD и СВ равны по условию задачи. А следовательно, получаем, что сторона АЕ=СЕ. Что и требовалось доказать.
Рассмотрим свойство треугольника, которое следует из третьего признака равенства треугольников:
Возьмём две рейки, у которых два конца скреплены. Если будем сдвигать и раздвигать свободные концы этих реек, то угол между ними будет изменяться. А вот если мы возьмём третью рейку и скрепим её концы со свободными концами первых двух реек, то у нас уже не получится сдвинуть или раздвинуть никакие две стороны, а значит, нельзя изменить ни один угол.
Так как треугольник обладает таким свойством, то его называют жёсткой фигурой.
Это свойство треугольника делает его незаменимым в технике и строительстве. Элементы конструкции в форме треугольника сохраняют свою форму.
Например, чтобы закрепить столб в вертикальном положении к нему ставят подпорку. По такому же принципу устанавливается кронштейн.
А также стойки стремянки могут свободно раздвигаться, если не будут зафиксированы перемычкой.
Источник