- Большая Энциклопедия Нефти и Газа
- Получение — высокопрочный чугун
- О производстве литья
- Популярные статьи
- Обучающий PDF-мануал «5 способов эффективно вложить 1000+ руб»
- Модные часы для успешных
- Свежие записи
- Блок подписки
- Как получают высокопрочный чугун
- Условия получения высокопрочного чугуна внутриформенным способом
- Технология получения высокопрочного чугуна с шаровидным графитом
Большая Энциклопедия Нефти и Газа
Получение — высокопрочный чугун
Получение высокопрочного чугуна состоит в том, что расплавленный серый чугун подвергается модифицированию и ферросилицием, и магнием. В результате такого двойного модифицирования графит в структуре высокопрочного чугуна выделяется в виде шаровых комочков ( фиг. Существенно то, что такая форма графита получается в высокопрочном чугуне непосредственно в процессе литья, тогда как для получения ее в структуре ковкого чугуна требуется длительный отжиг. Поэтому высокопрочный чугун значительно дешевле ковкого. [1]
Для получения высокопрочного чугуна с основой из тонкопластинчатого или даже сорбитообразного перлита чаще всего легируют чугун хромом и никелем, которые, как известно, способствуют образованию высокодисперсных эвтектоидов. [2]
Для получения высокопрочного чугуна с преимущественно ферритовой структурой; необходимо снижение содержания марганца до 0 4 % и фосфора до 0 1 % в исходном чугуне. [3]
Для получения высокопрочного чугуна в специальной камере в перегретый до 1400 — 1500 С жидкий серый чугун в ковше вводят 0 5 — 1 0 % Mg и 0 5 — 1 0 % ферросилиция. [4]
Существует несколько способов получения высокопрочных чугунов . [5]
В последнее время разработан метод получения нового, высокопрочного чугуна с округлым графитом. Перед разливкой жидкий чугун подвергается модифицированию магнием. В результате такого модифицирования чугун по структуре графита и по механическим свойствам превосходит не только серый, но и ковкий чугун. [6]
В последние годы церий применяют для получения высокопрочного чугуна . При производстве ковкого чугуна церий наряду со сфероидизацией графита повышает ударную вязкость. [7]
Магниевые и цериевые лигатуры разнообразного состава [19] применяют для модифицирования при получении высокопрочного чугуна с шаровидным графитом. [9]
Замена ковкого чугуна этим новым материалом дает возможность резко сократить цикл отжига, и в связи с доступностью получения высокопрочного чугуна практически в любом литейном цехе расширяется область применения отливок со свойствами, присущими ковкому чугуну. [10]
К числу наиболее прогрессивных технологических литейных процессов, разработанных и внедренных в Советском Союзе в годы первых индустриальных пятилеток, относится получение высокопрочного чугуна путем модифицирования его 75 % — ным ферросилицием и силикокальцием. Эти работы были успешно проведены на заводе Станколит Г. И. Клецкиным. [11]
В последнее время высокопрочный чугун начинают с успехом использовать для таких ответственных деталей, как коленчатые валы двигателей внутреннего сгорания, задние мосты автомобилей, зубчатые колеса, шатуны и др. Получению высокопрочного чугуна способствует применение в вагранках кислородного дутья. [12]
Модифицированный чугун с пластинчатым графитом получают обработкой жидкого, сравнительно малоуглеродистого чугуна графитизирующими присадками. Получение высокопрочного чугуна с глобулярным графитом связано с обработкой жидкого чугуна, наоборот, с повышенным содержанием углерода и кремния. [13]
Известно, что элементы, увеличивающие отбеливаемость, можно расположить в порядке возрастания эффективности их влияния следующим образом: Mn, Mo, Sn, Cr, V, S, Те. Модификаторы, используемые для получения высокопрочного чугуна с шаровидным графитом, — магний и церий увеличивают склонность к отбеливанию. [14]
Частички модификаторов, являясь дополнительными центрами кристал лизации, способствуют размельчению графитовых включений и приближению их формы к форме графита ковкого чугуна. Лучшим модификатором является магний, используемый при получении высокопрочных чугунов . [15]
Источник
О производстве литья
Популярные статьи
Обучающий PDF-мануал «5 способов эффективно вложить 1000+ руб»
Модные часы для успешных
Свежие записи
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
Блок подписки
Согласие на получение новостей с сайта
Как получают высокопрочный чугун
Одним из способов получения высокопрочного чугуна, является внутриформенное модифицирование.
Для этого применяется специальная литниковая система для внутриформенного модифицирования чугуна.
Которая состоит из стояка, камеры модифицирования,
и далее обыкновенных шлаковиков, питателей, прибылей, выпоров.
Условия получения высокопрочного чугуна внутриформенным способом
Обязательно для проверки качества получения отливок, на литниковую систему, должен быть установлен образец для механических испытаний, только в него не должны попадать первые порции металла.
Механические свойства являются одним из важных свойств, при определении качества получаемого литья.
Внутриформенное модифицирование высокопрочного чугуна, высокопрочный чугун обозначается буквами (ВЧ) происходит в литниковой системе. Поэтому помимо подвода расплава и питания отливок она должна обеспечивать согласование темпа растворения модификатора в реакционной камере с интенсивностью поступления чугуна в форму.
Размеры реакционной камеры должны обеспечивать равномерное насыщение чугуна магнием.
При этом должен исключаться подсос воздуха и попадание продуктов реакции в отливку. Это обеспечивается закрытой литниковой системой и центробежным шлакоуловителем.
Элементы литниковой системы рассчитываются по определенной методике, согласно которой должны учитываться следующие параметры:
- Размер форм, определяется существующим парком опок.
- Количество отливок в форме.
- Высота отливки в верхней и нижней полуформе.
- Масса отливки
- Масса жидкого металла, заливаемого в форму.
- Масса модификатора — определяется по методике.
- Время заливки формы жидким металлом – определяется по методике.
- Гранулометрический состав модификатора
- Толщина стенок отливки.
Также расплав и модификатор должны иметь определенный химический состав, который позволит получить высокопрочный чугун.
К примеру, содержание серы в жидком чугуне должно быть не более 0,02 %, иначе сера просто свяжет магний, содержащийся в модификаторе, соответственно не получится насыщения чугуна магнием, в результате чего не получится высокопрочного чугуна.
Помимо внутриформенного модифицирования высокопрочный чугун получают путем ковшевого модифицирования чугуна. При этом способе увеличивается % выхода годного литья, за счет уменьшения черного веса отливок. Но при этом способе должен выдерживаться стабильный хим. состав и стабильная температура металла при заливке в форму, но есть ограниченное время заливки промодифицированного расплава.
По мнению большинства, получение высокопрочного чугуна внутриформенным модифицированием является более стабильным процессом, чем ковшевое модифицирование.
Есть еще один способ получения высокопрочного чугуна модифицирование в струю жидкого металла, подачи проволокой с содержанием модифицирующего элемента трайб аппаратом, но данный способ получения высокопрочного чугуна требует высокой технологической дисциплиной и культурой производства в литейном производстве, установкой современного, соответствующего мировым стандартам, технологического оборудования.
Источник
Технология получения высокопрочного чугуна с шаровидным графитом
Известно, что высокопрочный чугун с шаровидным графитом (ВЧШГ) получают путем модифицирования жидкого чугуна сфероидизирующими модификаторами, содержащими магний, церий и иттрий. Чугун, подвергаемый модифицированию, должен удовлетворять ряду приведенных ниже требований, выполнение которых является задачей плавки.
Требования к жидкому чугуну.
Важнейшим требованием к химическому составу жидкого металла при получении высокопрочного чугуна с шаровидным графитом является низкое содержание серы — до 0,03%.Т1ри этом снижение содержания серы способствует уменьшению расхода дорогостоящих модификаторов.
Техническими условиями, принятыми на ВАЗе и КамАЗе, допускается содержание серы не более 0,012%. Составить шихту с таким низким содержанием серы практически невозможно, поэтому важнейшей задачей плавки является десульфурация. В связи с этим использование для плавки дуговых пеней с основной футеровкой в данном случае является оправданным, несмотря на высокое пылегазовыделение и шум.
При наведении основного шлака рекомендуется вводить известь (6 кг/т металла) для снижения избыточного количества серы на 0,001 %. Содержание в чугуне демодификаторов Pb, Bi, Sn, Sb, As, Ti, Al даже в незначительных количествах препятствует сфероидизации графита. С учетом этого требуется тщательный отбор шихтовых материалов. Не допускается использование лома неизвестного происхождения. Помимо первичных материалов и возврата используются стальные отходы кузнечно-прессового производства.
Температура чугуна при модифицировании должна быть выше, чем при модифицировании серого чугуна, 1480. 1530 °С. Это объясняется тем, что на испарение магния, введенного в расплав, требуется значительное количество теплоты (при введении каждого 1 % Mg температура чугуна снижается на 80. 90 °С).
Сфероидизирующне модификаторы.
Шаровидная форма графита в чугуне достигается использованием модификаторов, содержащих магний, церий и иттрий. Модификаторы на основе магния, в свою очередь, разделяют на металлический магний и магнийсодержащие лигатуры. Металлический магний имеет плотность в 4 раза меньшую, чем расплавленный чугун, поэтому при простом введении его в металл он всплывает и сгорает ослепительно ярким пламенем. При принудительном погружении его в расплав чугуна при температуре 1400 °С магний испаряется и давление его паров может достигать 0,7 МПа. Пары магния, выходя из расплава, вызывают интенсивное перемешивание и выбросы металла. Над поверхностью расплава пары магния сгорают. Обычно в металле остается не более 1/10 количества введенного в него магния.
Для улучшения усвоения магния расплавом используются магнийсодержащие лигатуры, магний—кремний—железо, магний-никель, магний—медь, магний—никель—медь и др. Особенно широкое распространение получили в свое время тяжелые лигатуры содержащие около 85 % никеля. Плотность такой лигатуры выше, чем жидкого чугуна, что в сочетании с относительно низким содержанием магния предопределяет ее хорошее усвоение и незначительный пироэффект.
Однако никель возвращается в шихту в составе возврата и практически не угорает в процессе плавки. Учитывая, что доля возврата при производстве ВЧШГ составляет не менее 40%, содержание никеля в металле быстро растет от плавки к плавке, если в шихте используется более 10 % возврата. Это создает организационные трудности, связанные с использованием излишков возврата чугуна, модифицированного никель-магниевой лигатурой.
Учитывая отбеливающее действие магния, производят вторичное модифицирование ферросилицием ФС75 в количестве от 0,3 до 1 % в зависимости от толщины стенки отливки.
Цериевые модификаторы. Температура кипения церия около 3450 °С, поэтому при вводе его в расплав чугуна не наблюдается выбросов металла, и, кроме того, температура расплава может быть ниже (1390. 1410 °С). Однако для равномерного распределения его необходимо принудительное перемешивание металла.
Церий, так же как и магний, является активным десульфуратором, но в отличие от магния не образует черных пятен в структуре отливок при повышенном содержании серы в исходном чугуне.
Для получения высокопрочного чугуна с шаровидным графитом церий применяется в виде многообразных лигатур, таких как ферроцерий, мишметалл, цериевый мишметалл, сиитмиш и другие, содержащие около 50 % Се.
Комплексные модификаторы, разнообразные по составу и свойствам, получили в настоящее время наибольшее распространение. Наряду с магнием, который производит сфероидизирующее действие и перемешивание, в них обычно входит кремний, предотвращающий отбел. Церий и кальций в комплексных модификаторах способствуют связыванию избытка серы.
Модификатор ФЦМ5, содержащий 5 % магния, успешно применялся при литье коленчатых валов трактора «Владимирец». В модификаторах марок ЖКМК1 . ЖКМК10 помимо железа содержатся Mg, Са, Si и редкоземельные элементы.
В настоящее время наибольшее применение имеют модификаторы ФСМг5 и ФСМг6, содержащие соответственно 5 и 6 % Mg и использующиеся как для внутриформенного, так и для ковшового модифицирования.
Сфероидизирующие модификаторы в размельченном состоянии не подлежат длительному хранению, так как входящие в них элементы легко окисляются.
Иттривые модификаторы не получили до настоящего времени промышленного применения.
Способы введения в расплав сфероидизирующих модификаторов. Из всего многообразия способов ввода в расплав сфероидизирующих модификаторов к настоящему времени получили применение лишь несколько способов, удовлетворяющих условиям техники безопасности и обеспечивающих достаточно высокий коэффициент усвоения модификатора. Способ ввода модификатора выбирают с учетом масштабов производства и стоимости применяемого оборудования.
Для целей лабораторных и исследовательских работ, а также при небольших объемах производства предпочтителен способ ввода модификатора под колокольчиком в ковше с металлической крышкой (рис.1, а).
Рис. 1. Способы ввода в расплав сфероидизирующих модификаторов: а — под колокольчиком; б — в автоклаве; в — в герметизированном ковше-конвертере; 1 — колокольчик; 2 — крышка; 3 — корпус автоклава; 4 — ковш с металлом; 5— мешалка; 6— полость для модификатора; 7— крышка ковша; 8 — модификатор
В шамотографитовый или стальной колокольчик 1 с отверстиями в боковых стенках закладывают бумажный пакет с навеской модификатора. Пакет закрепляют в колокольчике вязальной проволокой. Крышку 2 надевают на штангу колокольчика и устанавливают на ковш. Колокольчик опускают в глубь металла.
При использовании тяжелой никель-магниевой лигатуры широко используется ввод ее под струю в разливочный ковш.
При использовании в качестве модификатора металлического магния наилучшие результаты дает применение автоклава (рис.1, б). В стальной корпус автоклава 3 при снятой крышке устанавливают ковш с металлом 4. В полость 6 крышки закладывают навеску магния и закрывают ее мешалкой 5. Крышку устанавливают на корпус автоклава, стык между ними герметизирован. Между крышкой и штоком мешалки также имеется уплотняющая манжета. После подачи воздуха в автоклав под давлением Ρ пневматический цилиндр опускает мешалку вниз, при этом модификатор падает в металл, который перемешивается в процессе возвратно-поступательного движения мешалки.
Широкое распространение получили также герметизированные Ковши, принцип действия которых показан на рис. 1, в. В боковую полость ковша закладывают навеску модификатора 8. После заливки металла ковш закрывают крышкой и поворачивают в вертикальное положение.
Установлено, что минимальное количество остаточного магния, необходимое для получения шаровидной формы графита в чугуне в любом сечении отливки, должно быть не менее 0,03 %. С учетом коэффициента усвоения модификатора количество магния, вводимого с модификатором, должно быть около 0,4 %. При использовании комплексных сфероидизирующих модификаторов суммарное содержание в них магния, кальция и редкоземельных элементов должно быть эквивалентно указанному выше содержанию магния.
Расход модификатора зависит от его состава, способа ввода в металл, содержания в металле серы, температуры металла и других факторов и составляет от 0,15 % для металлического магния, вводимого в автоклаве, до 2,5 % для лигатур при добавлении их в ковш. Необходимое и достаточное количество вводимого модификатора уточняется только опытным путем.
Источник:
Трухов А.П., Маляров А.И. Литейные сплавы и плавка. М. Академия, 2004.
Источник