Каким способом получают электроугольные изделия

Материалы для электроугольных изделий

К электротехническим угольным изделиям (сокращенно электро-угольные изделия) относятся щетки электрических машин, электро­ды для прожекторов и электролитических ванн, аноды гальваничес­ких элементов, микрофоны, содержащие угольный порошок, уголь­ные высокоомные резисторы, разрядники для телефонных сетей.

Исходным сырьем для производства электроугольных изделий являются графит, сажа и антрацит.

Природный графит – кристаллическое вещество, одна из форм углерода слоистой структуры (углерод известен в виде трех видоизменений: алмаза, графита и аморфного углерода — угля).

Графит образует слоистую кристаллическую решетку, каждый слой которой представляет собой шестиугольную сетку с расположенными в узлах атомами углерода. Отдельные слои отстоят друг от друга на большее расстояние, чем атомы между собой внутри каждого слоя, поэтому графит легко отслаивается, что ценно для работы скользящих контактов. Это свойство используют также при изготовлении сухих смазочных материалов на основе графита. Его физические свойства в направлении слоистости и перпендикуляр­но к ней различны. Графит обладает следующими свойствами:

— в направлении слоев электропроводность графита имеет «металлический» характер (ρ = 8 мкОм·м, ТКρ = 1·10 -3 К -1 );

— с увеличением температуры прочность графита повышается; на воздухе горит при температуре выше 600°С; при нагревании до температуры 170°С с воздухом не взаимодействует;

— ни при каких температурах не взаимодействует с серной, соляной и плавиковой кислотами и царской водкой;

— с концентрированной азотной кислотой вступает в реакцию, а в смеси с концентрированными азотной и серной кислотами графит (1 г) растворяется и образует графитовую кислоту; с расплавлены- ми щелочами не взаимодействует.

Добывают природный графит обогащением специальных руд. Искусственные графиты получают перекристаллизацией углей при температуре 2200. 2500°С. Во многих случаях им отдают предпочтение перед природными, поскольку искусственные графиты имеют очень чистый состав, а их стоимость не превышает стоимости при-родных графитов.

Изделия из графита можно использовать только в инертной сре­де или в вакууме при температуре до 2000°С, а в среде кислорода и двуокиси углерода — при температуре до 500°С.

Основные характеристики природного графита приведены в таблице 2.9.

Таблица 2.9 – Основные свойства природного графита

Параметр Монокристалл графита относительно базисных плоскостей Поликристалличе­ский графит
вдоль поперек
Плотность D, кг/м 3 Удельное электрическое сопротивление ρ, мкОм·м 2000…2400
0,4
Температурный коэффициент, К -1 : ТКρ ТКl -9·10 -4 6,6·10 -6 -4·10 -2 2,6·10 -6 -1·10 -3 7,5·10 -6

Графит выпускают в виде прутков, пластин, брусков.

Пиролитический углерод получают в процессе термического разложения без доступа кислорода (пиролиза) газообразных угле­водородов в камере, где находятся стеклянные или керамические заготовки оснований для непроволочных резисторов. Пиролизу подвергают, как правило, углеводороды метанового ряда, облада­ющие способностью при высоких температурах разлагаться с об­разованием на изоляционных подложках пиролитического углеро­да. В технологических процессах изготовления непроволочных резисторов чаще всего используют метан, пары бензина или гептана. В отличие от монокристаллического графита структура пиролити­ческого углерода не имеет строгой периодичности в расположении атомных слоев при сохранении их параллельности. Расстояние меж­ду атома-ми углерода у пиролитического углерода меньше, чем у графита. Пиролитический углерод состоит из отдельных поликри­сталлических конгломератов, осажденных на поверхность изоляционного основания (подложку). Основные свойства пленок пиролитического углерода приведены ниже.

Толщина пленок, см, не более 10 -6

Плотность D, г/см 3 2,05

Удельное электрическое сопротивление ρ, Ом·см 1,5·10 -5

ТКρ, К -1 2·10 -4 (-4·10 -4 )

Структура и свойства пленок пиролитического углерода зависят:

— от температуры процесса разложения углеводородов (с увеличе­нием температуры пиролиза происходит увеличение кристаллов уг­лерода, содержания в нем различных примесей и уменьшения удель­ного электрического сопротивления ρ);

— скорости проведения реакции пиролиза;

— шероховатости рельефа поверхности подложки;

Пиролитические пленки углерода обладают следующими свой­ствами:

— высокая стабильность параметров;

— низкий уровень шумов;

— небольшой и неизменный температурный коэффициент сопро­тивления;

— малая зависимость сопротивления от приложенного напряжения;

— стойкость к импульсным перегрузкам;

— относительно низкая себестоимость.

В результате пиролиза бороорганических соединений [В(С4Н9)3 или В(С3Н7)3] получают бороуглеродистые пленки с малым темпе­ратурным коэффициентом удельного электрического сопротивле­ния ТКρ.

Природный графит, сажу, пиролитический углерод и бороуглеродистые пленки используют в качестве проводящих материалов для непроволочных линейных резисторов, которые должны иметь малую зависимость электрического сопротивления от напряжения и высокую стабильность при повышенной температуре и влажнос­ти. Непроволочные резисторы отличаются от проволочных мень­шими размерами и высоким верхним пределом номинального со­противления.

Читайте также:  Протокол выбора непосредственного способа управления многоквартирным домом

Угольные материалы используют для изготовления щеток. Щетки служат для образования скользящего контакта между не­подвижной и вращающейся частями электрической машины. Раз­личные марки щеток отличаются по значению удельного электри­ческого сопротивления, допустимой плотности тока, коэффициен­ту трения, линейной скорости на коллекторе, составу, технологии изготовления, размеру (прилегающая к коллектору контактная поверхность щетки может иметь размеры от 4 4 до 35 35 мм, высота щетки 12. 70 мм).

Промышленность выпускает щетки различных марок: угольно-графитные (Т и УГ), графитные (Г), электрографитированные, т.е. подвергнутые графитированию (ЭГ); медно-графитные с содержа­нием меди, что дает снижение электрического сопротивления и не­значительное контактное падение напряжения между щеткой и кол­лектором.

Сажи представляют собой мелкодисперсный углерод с примесью смолистых веществ. Лаки с добавками углерода обладают широким диапазоном удельного электрического сопротивления (0,01. 400 Ом·м).

Для получения стержневых электродов сажу и графит смешива­ют со связующим материалом, в качестве которого используют ка­менноугольную смолу, а иногда жидкое стекло. Полученную массу продавливают через мундштук или прессуют в соответствующих пресс-формах и подвергают термообработке. От режима обжига зависит форма, в которой углерод находится в изделии. При высо­ких температурах обжига (2200°С) углерод искусственно перево­дится в форму графита, размеры кристаллов графита увеличива­ются, повышается проводимость материала и снижается его твер­дость. Этот процесс называют графитированием.

Антрацит представляет собой блестящий, черного цвета ископаемый уголь с наиболее высокой степенью изменения структу­ры в ряду каменных углей. Горит слабым пламенем, почти без дыма, не спекается. Антрацит используют в виде угольных порошков и угольных материалов.

Угольные порошки для микрофонов получают дроблением ант­рацита. Удельное электрическое сопротивление порошка зависит от размеров зерен, плотности засыпки порошка в форму и режимов термообработки. Мелкозернистые порошки получают после просеивания через сито с 52 отверстиями на 1 см 2 , а крупнозернистые – через сито с 45 отверстиями на 1 см 2 . В процессе обжига при темпе­ратуре 600. 800°С увеличивается удельное электрическое сопротив­ление порошка. Удельное электрическое сопротивление мелкозер­нистого порошка ρ = 0,4 Ом·м.

Угольные материалы (измельченный антрацит со связкой) для угольных электродов, предназначенных для работы при высоких температурах, обжигают при температурах до 3000°С.

Особенностью угольных изделий является то, что они имеют отрицательный температурный коэффициент удельного электричес­кого сопротивления ТКρ.

Источник

Способ изготовления электроугольных изделий

Владельцы патента RU 2560619:

Изобретение относится к изготовлению электроугольных изделий. Готовят порошковую композицию путем смешивания связующего с графитовым наполнителем, проводят горячее прессование полученной порошковой композиции и поэтапную ее термообработку с нагревом и последующей выдержкой при конечной температуре. Графитовый наполнитель используют со средним размером частиц 100÷110 мкм. Прессование начинают в предварительно нагретой до 70÷90°С вместе с порошковой композицией пресс-форме под давлением 45÷50 МПа. Поэтапную термообработку ведут в этой же пресс-форме под давлением прессования, причем сначала проводят быстрый нагрев до 110÷120°С со скоростью 1,9÷2°С/мин, затем медленный нагрев — до температуры 160÷170°С со скоростью 1,4÷1,5°С/мин, после чего ведут нагрев до температуры 180÷200°С со скоростью 1,6÷1,8°С/мин и выдержку при конечной температуре под давлением в течение 1÷2 мин. Обеспечивается увеличение плотности и повышение электропроводности получаемых изделий. 1 пр.

Изобретение относится к порошковой технологии, а именно к способам получения электроугольных изделий, в частности щеток электромашин, контактных вставок токосъемников для городского и железнодорожного транспорта и других изделий из порошковых композиций на основе углерода.

Известен способ изготовления электроугольных изделий электротехнического назначения из наполнителя в виде кокса с добавками и связки в виде каменноугольной смолы и пека (Темкин И.В., Производство электроугольных изделий. — М.: Высшая школа, 1975, с. 13). Способ включает получение порошковой композиции, последующее прессование из нее полуфабрикатов, дальнейшую их термообработку и механическую обработку. Прессование ведут с удельным усилием до 300 МПа со скоростью пуансона 15-30 мм/с, где полуфабрикаты формируют в нагретых до 180-210°С в пресс-формах (Темкин И.В., Производство электроугольных изделий. М.: Высшая школа, 1986, с. 114-116). При горячем прессовании в нагретых пресс-формах кроме первого хода пуансона делают 2-3 дополнительные допрессовки для удаления газов из прессовки при давлении, возрастающем на 10-15% от номинального давления. При номинальном давлении прессовку выдерживают в течение 3-5 минут и выше в зависимости от размера прессовки. Операцию первого хода прессования ведут в закрытой пресс-форме.

Читайте также:  Способы установки маяков для заливки пола

Термообработка полуфабрикатов включает: отжиг длительностью от 24 до 48 суток и графитизацию длительностью от 7 до 10 суток (Темкин И.В., Производство электроугольных изделий. — М.: Высшая школа, 1975, с. 112-115, 118-119).

Недостатками указанного аналога являются низкая плотность получаемых изделий и высокие трудоемкость и длительность процесса их производства. Низкая плотность обусловлена загерметизацией летучих газов в порах между частицами порошка уже после первой операции прессования и при дальнейшем прессовании их удаление малозначительно.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому является способ изготовления электроугольных изделий — контактных вставок для железнодорожного и городского электротранспорта (Патент РФ на изобретение №2267411, Способ изготовления контактных вставок, МПК B60L 5/08, от 10.01.2006). Способ включает приготовление порошковой композиции путем смешивания связующего с графитовым наполнителем, горячее прессование изделий из полученной смеси при температуре 150-170°С при удельном давлении прессования 300-400 кгс/см 2 , выдержку их под давлением в течение 3-5 минут, охлаждение и последующую поэтапную термообработку прессовок. Первый этап термообработки включает быстрый нагрев до 80-100°С, второй — медленный нагрев с убывающей скоростью до 150-200°С. После этого ведут выдержку при этой температуре и медленное естественное охлаждение.

Недостатками способа являются низкая плотность и пониженные физико-механические свойства получаемых изделий в результате того, что операции прессования и термообработки производят раздельно. После прессования прессовка охлаждается, а затем вновь нагревается. При горячем прессовании и выдержке 3-5 минут из прессовки только частично удаляются летучие, только начинается полимеризация, расплавление частиц связки, разложение уротропина (отвердителя), входящего в состав связки, и отверждение композиции. Частичное отверждение закрывает часть каналов для удаления летучих и герметизирует многие поры с летучими, к которым относятся О2, N2, пары Н2О, остаточный фенол, СО и СО2. Поэтому при последующей термической обработке затруднено удаление летучих, практически прекращается полимеризация (нет активных центров), но продолжается превращение частиц твердой связки в жидкую, разложение уротропина с дополнительным выделением N2, летучего аммиака (NH3) и отверждение композиции. При повышении температуры прессовок до 200°С и за время термообработки, превышающее 5 часов, летучие в закрытых каналах и порах расширяются, что приводит к разбуханию, т.е. к разуплотнению прессовок и ухудшению их физико-механических свойств.

Задачей предлагаемого изобретения является устранение этих недостатков, а именно увеличение плотности изготовляемых изделий и повышение их физико-механических свойств.

Поставленная задача решается тем, что в способе изготовления электроугольных изделий, включающем приготовление порошковой композиции путем смешивания связующего с графитовым наполнителем, горячее прессование полученной порошковой композиции и поэтапную ее термообработку с нагревом и последующей выдержкой при конечной температуре, согласно предлагаемому решению, используют графитовый наполнитель со средним размером частиц 100÷110 мкм, прессование начинают в предварительно нагретой до 70÷90°С вместе с порошковой композицией пресс-форме под давлением 45÷50 МПа, а поэтапную термообработку ведут в этой же пресс-форме под давлением прессования, причем сначала проводят быстрый нагрев до 110÷120°С со скоростью 1,9÷2°С/мин, затем медленный нагрев — до температуры 160÷170°С со скоростью 1,4÷1,5°С/мин, после чего ведут нагрев до температуры 180÷200°С со скоростью 1,6÷1,8°С/мин и выдержку при конечной температуре под давлением в течение 1÷2 мин.

То, что прессование ведут в предварительно нагретой вместе с порошком пресс-форме с заявляемыми режимами, а термообработку после окончания прессования осуществляют в этой же пресс-форме с указанными в формуле изобретения режимами и с введением при термообработке после этапа медленного нагрева дополнительного ускоренного нагрева позволит в максимальной степени использовать свойства полимеризации и затвердевания смолы для более полного рационального удаления из композиции и прессовки летучих, не нарушая прочности прессовки и избегая ее дефектов при превышении допустимого количества удаления летучих.

Уменьшение предварительного нагрева пресс-формы вместе с порошковой композицией менее 70°С, как и давления на стадии прессования менее 45 МПа не позволит активно удалять летучие, а увеличение этой температуры более 90°С, как и увеличение давления прессования более 50 МПа приведет к преждевременному началу полимеризации связки.

Читайте также:  Способ справиться с паническим страхом

Снижение температуры быстрого нагрева при термообработке менее 110°С, как и снижение скорости нагрева на этом этапе менее 1,9°С не обеспечит активной полимеризации смолы, превращение ее в жидкость и смачивание частиц графита. Увеличение температуры быстрого нагрева более 120°С, как и увеличение скорости нагрева более 2°С/мин опасно очень активным удалением летучих и возникновением в результате этого дефектов на прессовках.

На этапе медленного нагрева скорость менее 140°С/мин, как и температура нагрева менее 160°С слишком замедляет процесс полимеризации, смачивание графита жидкой смолой, процесс разложения уротропина и начало процесса отверждения композиции. Нагрев более 170°С/мин приводит к дефектам на прессовках, поскольку разложение уротропина приводит к дополнительному выделению летучих N2 и аммиака.

Ускоренный нагрев после медленного нагрева менее 180°С со скоростью нагрева менее 1,6°С/мин не обеспечит полного разложения уротропина и удаления летучих от его разложения, что снизит прочность прессовок. Нагрев более 200°С со скоростью нагрева более 1,8°С/мин может привести к дефектам при дополнительном очень быстром удалении летучих, появившихся при разложении уротропина.

Смешивание связующего с графитовым наполнителем со средними размерами частиц менее 100 мкм приводит к повышенному содержанию связки и снижению электропроводности изделий, а с размерами более 110 мкм — к снижению их прочностных свойств.

Выдержка прессовки под давлением менее 1 минуты не позволяет завершить отверждение композиции, что снижает прочностные свойства изделий, а выдержка более 2 минут может привести к началу разрушения после полного завершения отверждения изделия.

Способ изготовления электроугольных изделий осуществляется следующим образом.

Вначале смешивают связующее с графитовым наполнителем размерами частиц 100÷110 мкм, готовую композицию засыпают в пресс-форму и нагревают ее вместе с порошковой композицией до 70÷90°С. Затем ведут прессование при давлении 45÷50 МПа. Пуансон оставляют в нижнем положении и нагревают пресс-форму со скоростью 1,9÷2°С/мин до 110÷120°С. После достижения указанной температуры замедляют скорость нагрева до скорости 1,4÷1,5°С/мин и нагревают пресс-форму до 160÷170°С. Затем снова увеличивают скорость нагрева до 1,6÷1,8°С/мин и нагревают пресс-форму до 180÷200°С. После достижения указанной температуры прессовку под давлением 45÷50 МПа выдерживают при этой температуре 1÷2 минуты и извлекают ее из пресс-формы.

Согласно предлагаемому способу были получены заготовки электрических щеток размерами 10×30×50 мм из порошковой композиции, содержащей графит и фенолформальдегидную смолу. Для нагрева матрицы пресс-формы, заполненной порошковой композицией, использован электрический нагреватель, охватывающий матрицу по наружной поверхности и снабженный автоматической системой контроля температуры и установления ее уровня, работающий по заданной программе. Данные о значениях температуры и характере ее изменения выводятся на экран компьютера. Время быстрого нагрева при термообработке составило в среднем 18 минут, время медленного нагрева — 34 минуты, время нагрева при повышенной скорости нагрева — 14 минут, время выдержки — 1,5 минуты. Общее время составило 67,5 минут, что в пять раз меньше затрат времени наиболее близкого аналога. Плотность полученных 10 заготовок щеток находилось в пределах 1,68-1,72 г/см 3 .

Предлагаемый способ изготовления электроугольных изделий найдет свое применение в порошковой технологии при получении изделий из порошковых композиций на основе углерода.

Способ изготовления электроугольных изделий, включающий приготовление порошковой композиции путем смешивания связующего с графитовым наполнителем, горячее прессование полученной порошковой композиции и поэтапную ее термообработку с нагревом и последующей выдержкой при конечной температуре, отличающийся тем, что используют графитовый наполнитель со средним размером частиц 100÷110 мкм, прессование начинают в предварительно нагретой до 70÷90°С вместе с порошковой композицией пресс-форме под давлением 45÷50 МПа, а поэтапную термообработку ведут в этой же пресс-форме под давлением прессования, причем сначала проводят быстрый нагрев до 110÷120°С со скоростью 1,9÷2°С/мин, затем медленный нагрев — до температуры 160÷170°С со скоростью 1,4÷1,5°С/мин, после чего ведут нагрев до температуры 180÷200°С со скоростью 1,6÷1,8°С/мин и выдержку при конечной температуре под давлением в течение 1÷2 мин.

Источник

Оцените статью
Разные способы