Каким способом показан радиационный баланс

Том 2

Климат

Радиационный баланс

Радиационный баланс подстилающей поверхности равен разности поглощенной земной поверхностью суммарной радиации и эффективного излучения:

B = (S’ + D — R) — (Eз — bEa) = Q(1-Ak) — Eэф

где S ‘ — прямая солнечная радиация; D — рассеянная радиация; Q — суммарная солнечная радиация; R — отраженная радиация; Ak — альбедо подстилающей поверхности, Ез — собственное излучение земной поверхности; b— относительный коэффициент поглощения длинноволновой радиации подстилающей поверхностью; E а — встречное излучение атмосферы; Еэф — эффективное излучение подстилающей поверхности.

Количество поглощенной радиации в значительной степени определяется величиной альбедо — отражательной способностью земной поверхности. Альбедо, измеренные на актинометрических станциях (зимой площадка покрытая снегом, летом — травой) не характеризуют в полной мере отражательных свойств больших территорий. В зимний период разница в альбедо открытых снежных участков и леса, покрытого снегом, составляет от 15 до 30%. В бесснежный период альбедо зеленой травы незначительно отличается от альбедо леса, поэтому даже в районах с большими лесными массивами различия между поглощенной радиацией открытых участков (метеорологических площадок) и реальной подстилающей поверхности находится в пределах основной ошибки вычисления месячных сумм поглощенной радиации. В целом за год земной поверхностью поглощается от 50% (в Арктике) до 80%( в южных районах) от поступающей суммарной радиации. Большая часть годового количества поглощенной радиации приходится на период с апреля по сентябрь. В северных районах это оставляет 90–95 % от годовой суммы, в южных– 70–80 %.

Земная поверхность, нагретая в результате поглощения солнечной радиации, становится источником собственного излучения, направленного в атмосферу. В свою очередь атмосфера, нагревающаяся за счет турбулентного теплообмена с земной поверхностью, также излучает тепловую радиацию, направленную к земной поверхности (противоизлучение атмосферы). Разность между собственным излучением земной поверхности и поглощенной земной поверхностью частью противоизлучения атмосферы называется эффективным излучением. Распределение годовых сумм эффективного излучения близко к широтному, увеличение с севера на юг происходит в диапазоне 800–1800 МДж/км 2 .

Радиационный баланс изменяется под действием факторов, влияющих на его основные составляющие. Ночью значения радиационного баланса, определяемые только эффективным излучением, зависят от температуры подстилающей поверхности, облачности и стратификации атмосферы. Днем основная составляющая радиационного баланса — суммарная радиация — зависит от высоты солнца, облачности и альбедо подстилающей поверхности.

Ночью радиационный баланс имеет отрицательные значения. Переход от отрицательных значений к положительным происходит в среднем через 1 час после восхода солнца и обратный переход от положительных значений к отрицательным — за 1час 30мин до захода солнца. В зимние месяцы на севере отрицательный радиационный баланс наблюдается в течение суток.В годовом ходе смена знака радиационного баланса связана с датами образования и разрушения устойчивого снежного покрова. На островных полярных станциях (до 75–77°с.ш.) отрицательный радиационный баланс наблюдается в течение 7–8 мес., в умеренных широтах 3–4 мес. (с ноября по февраль), на юге (до 45–46°с.ш.) — в течение 1–2 мес. (декабрь-январь), а еще южнее радиационный баланс положителен в течение всего года.

Радиационный баланс открытых участков земной поверхности (метеорологических площадок) наиболее близко характеризует условия мест жилья и хозяйственной деятельности человека, но он отличается от радиационного баланса реальной поверхности (например, лесных массивов). Так, радиационный баланс хвойных лесов на 50–60% выше, чем открытой площадки. Для лиственных лесов эти различия меньше. Лесостепи, степи и другие нелесные поверхности по своим отражательным способностям близки к метеорологическим площадкам, поэтому данные актинометрических наблюдений можно использовать для оценки радиационного баланса полей зерновых культур.

Читайте также:  Какие способы одиночества ты можешь назвать

В зимние месяцы (для большей территории России это период с ноября по февраль) радиационный баланс имеет отрицательные значения и его распределение по территории сильно отличается от широтного. В январе нарушение зональности связано с наличием в умеренных широтах двух обширных областей, для которых характерно некоторое уменьшение отрицательных значений радиационного баланса. Одна из них расположена на северо-западе Европейской части России, где увеличение радиационного баланса связано с большой облачностью под влиянием западного переноса влажных воздушных масс. Вторая область находится в Восточной Сибири, где рост радиационного баланса связан с преобладанием в зимние месяцы антициклональной циркуляции, способствующей образованию инверсий.

Граница нулевого радиационного баланса в январе и декабре проходит на широте 45–46°с.ш. по Краснодарскому краю. В ноябре и феврале на Европейской части России нулевая изолиния поднимается до 50°с.ш., а на Азиатской части она проходит по югу Приморского края.

Переходный сезон от зимы к лету включает март, апрель и май. Распределение радиационного баланса по территории в эти месяцы определяется главным образом свойствами подстилающей поверхности (альбедо). В марте к северу от 60°с.ш. радиационный баланс еще остается отрицательным, а в апреле отрицательные значения баланса сохраняются лишь на побережье северных морей. В мае радиационный баланс имеет положительный знак на всей территории, значения его по сравнению с апрелем резко возрастают. На крайнем севере происходит увеличение от нулевых значений до 80 МДж/м 2 , а в умеренных широтах от 100–120 до 280–320 МДж/м 2 . Наряду с общим увеличением радиационного баланса как в апреле, так и в мае отмечается наличие значительного градиента (около 20 МДж/м 2 на 1° широты) в поясе 55–62°с.ш. (апрель) и в поясе 65–73°с.ш. (май). Это связано с большими различиями в альбедо подстилающей поверхности из-за разного времени схода снежного покрова. Как видно из представленных графиков суточного хода, от зимы к весне резко возрастает интенсивность радиационного баланса в дневные часы.

В летние месяцы изменение радиационного баланса по территории России в целом характеризуется увеличением его с севера на юг. В июне наименьшие месячные значения баланса (менее 240 МДж/м 2 ) отмечаются в северных прибрежных районах востока Европейской части России и Западной Сибири. При продвижении к югу отмечается резкое возрастание радиационного баланса.

На Азиатской части России уже на широте 72°с.ш. его значения достигают 320 МДж/м 2 и более. На Европейской части такие значения отмечаются на широте около 60°с.ш. Максимальные величины (360 МДж/м 2 ) радиационного баланса в июне характерны для южных районов. В июле радиационный баланс изменяется по территории в пределах 280–360 МДж/м 2 .

В августе месячные суммы радиационного баланса убывают и составляют 160 МДж/м 2 в северных районах и 280 МДж/м 2 в южных. На юге Краснодарского края радиационный баланс еще достаточно высок и его значения составляют 320 МДж/м 2 .

Осенью в отличие от весенних месяцев, изменение баланса по всей территории происходит более равномерно и распределение его в сентябре и октябре близко к широтному. В сентябре радиационный баланс хотя и положительный, но его абсолютные значения резко уменьшаются по сравнению с летними месяцами. Особенно это проявляется на севере, где величина баланса в этом месяце составляет 40 МДж/м 2 , что в четыре раза меньше, чем в августе. В октябре вдоль 60-градусной параллели проходит граница между северными районами с отрицательным радиационным балансом и с положительным. Наибольшие значения 120 МДж/м 2 отмечаются на юге Приморского края.

Читайте также:  Что такое титрованный раствор способ приготовления

В ноябре радиационный баланс отрицательный практически на всей территории России, лишь к югу от 50°с.ш. он сохраняет небольшие положительные значения. Широтный характер распределения в отличие от предыдущих месяцев нарушается в связи с особенностями циркуляционных процессов и характером подстилающей поверхности. Рост радиационного баланса происходит не с севера на юг, а с северо-востока на юго-запад.

Источник

Каким способом показан радиационный баланс

Сухие глинистые почвы

Альбедо водных поверхностей при высоте Солнца свыше 60° меньше, чем альбедо суши, поскольку солнечные лучи, проникая в воду, в значительной мере поглощаются и рассеиваются в ней. При отвесном падении лучей А = 2— 5%, при высоте Солнца мень­ше 10° А = 50— 70%. Большое альбедо льда и снега обусловлива­ет замедленный ход весны в полярных районах и сохранение там вечных льдов.

Наблюдения за альбедо суши, моря и облачного покрова про­водятся с искусственных спутников Земли. Альбедо моря позво­ляет рассчитывать высоту волн, альбедо облаков характеризует их мощность, а альбедо разных участков суши позволяет судить о степени покрытия полей снегом и о состоянии растительного покрова.

Альбедо всех поверхностей, а особенно водных, зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее — утром и вечером. Это связано с тем, что при ма­лой высоте Солнца в составе суммарной радиации возрастает до­ля рассеянной, которая в большей степени, чем прямая радиа­ция, отражается от шероховатой подстилающей поверхности.

Длинноволновое излучение Земли и атмосферы

Земное излучение несколько меньше излучения абсолютно черного тела при той же температуре.

Излучение земной поверхности происходит непрерывно. Чем выше температура излучающей поверхности, тем интенсивнее ее излучение. Также непрерывно происходит излучение атмосферы, которая, поглощая часть солнечной радиации и излучения земной поверхности, сама излучает длинноволновую радиацию.

В умеренных широтах при безоблачном небе излучение атмо­сферы составляет 280—350 Вт/м², а в случае облачного неба оно на 20—30% больше. Около 62—64% этого излучения направлено к земной поверхности. Приход его на земную поверхность состав­ляет встречное излучение атмосферы. Разность этих двух потоков характеризует потерю лучистой энергии деятельным слоем. Эту разность называют эффективным излучением Еэф .

Эффективное излучение деятельного слоя зависит от его тем­пературы, от температуры и влажности воздуха, а также от об­лачности. С повышением температуры земной поверхности Еэф увеличивается, а с повышением температуры и влажности возду­ха уменьшается. Особенно влияют на эффективное излучение об­лака, так как капли облаков излучают почти так же, как и дея­тельный слой Земли. В среднем Еэф ночью и днём при ясном небе в разных пунктах земной поверхности изменяется в пределах 70—140 Вт/м².

Суточный ход эффективного излучения характеризуется мак­симумом в 12—14 ч и минимумом перед восходом Солнца. Годовой ход эффективного излу­чения в районах с континентальным климатом характеризуется максимумом в летние месяцы и минимумом в зимние. В районах с морским климатом годовой ход эффективного излучения выра­жен слабее, чем в районах, расположенных в глубине континента

Излучение земной поверхности поглощается водяным паром и углекислым газом, содержащимися в воздухе. Но коротковол­новую радиацию Солнца атмосфера в значительной степени пропускает. Это свойство атмосферы называется «оранжерейным эф­фектом» , поскольку атмосфера при этом действует подобно стек­лам в теплицах: стекло хорошо пропускает солнечные лучи, на­гревающие почву и растения в теплице, но плохо пропускает во внешнее пространство тепловое излучение нагревшейся почвы. Расчеты показывают, что при отсутствии атмосферы средняя тем­пература деятельного слоя Земли была бы на 38°С, ниже факти­чески наблюдающейся и Земля была бы покрыта вечным льдом.

Читайте также:  Как завязать пояс простой способ

Если приход радиации больше расхода, то радиационный ба­ланс положителен и деятельный слой Земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. Радиационный баланс днем обычно положителен, а ночью отри­цателен. Примерно за 1—2 ч до захода Солнца он становится от­рицательным, а утром, в среднем за 1 ч после восхода Солнца снова делается положительным. Ход радиационного баланса днем при ясном небе близок к ходу прямой радиации.

Изучение радиационного баланса сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной посевами и почвой, в зависимости от высоты Солнца, структуры посева, фазы развития растений. Для оценки разных приемов ре­гулирования температуры и влажности почвы, испарения и дру­гих величин определяют радиационный баланс сельскохозяйствен­ных полей при различных типах растительного покрова.

Методы измерения солнечной радиации и составляющих радиационного баланса

Для измерения потоков солнечной радиации применяются аб­солютные и относительные методы и соответственно разработаны абсолютные и относительные актинометрические приборы. Абсо­лютные приборы обычно применяют только для тарировки и по­верки относительных приборов.

Относительные приборы применяются при регуляр­ных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко использу­ются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов слу­жат термобатареи, составленные из двух металлов (обычно ман­ганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и воз­никает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, ко­торые определяются для данной пары: актинометрический при­бор — гальванометр.

Актинометр термоэлектрический (М-3) Савино­ва — Янишевского служит для измерения прямой радиации, при­ходящий на поверхность, перпендикулярную к солнечным лучам.

Пиранометр (М-80М) Янишевского служит для измере­ния суммарной и рассеянной радиации, приходящей на горизон­тальную поверхность.

При наблюдениях приемная часть пиранометра устанавливает­ся горизонтально. Для определения рассеянной радиации пирано­метр затеняется от прямой радиации теневым экраном в виде круглого диска, закрепленного на стержне на расстоянии 60 см от приемной поверхности. При измерении суммарной радиации те­невой экран отводится в сторону

Альбедометр — это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устрой­ство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбе­до подстилающей поверхности. Для полевых измерений использу­ют альбедометр походный М-69.

Балансомер термоэлектрический М-10М. Этот прибор применяется для измерения радиационного баланса под­стилающей поверхности.

Кроме рассмотренных приборов, используют также люкс­метры — фотометрические приборы для измерения освещенно­сти, спектрофотометры, различные приборы для измере­ния ФАР и т. д. Многие актинометрические приборы приспособ­лены для непрерывной записи составляющих радиационного баланса.

Важной характеристикой режима солнечной радиации являет­ся продолжительность солнечного сияния. Для ее определения служит гелиограф .

В полевых условиях наиболее часто применяются пиранометры, походные альбедометры, балансомеры и люксметры. Для на­блюдений среди растений наиболее удобны походные альбедомет­ры и люксметры, а также специальные микропиранометры.

Источник

Оцените статью
Разные способы