Каким способом можно открыть тиристор

Содержание
  1. Способы и схемы управления тиристором или симистором

    Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами. Содержание статьи Определение Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение. Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n). Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу. Основные характеристики Как и любых других электронных компонентов у тиристоров есть ряд характеристик: Падение напряжения при максимальном токе анода (VT или Uос). Прямое напряжение в закрытом состоянии (VD(RM) или Uзс). Обратное напряжение (VR(PM) или Uобр). Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии. Обратный ток (IR) — ток при определенном обратном напряжении. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс). Постоянное отпирающее напряжение управления (VGT или UУ). Ток управления (IGT). Максимальный ток управления электрода IGM. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу) Принцип работы Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора. Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды. Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии. После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится). Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше. Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно. После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах. Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже. Распространенные схемы управления тиристорами или симисторами Самой распространенной схемой является симисторный или тиристорный регулятор. Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод. Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн. Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен. Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами. По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров. Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления. На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы. Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль. Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом: Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную». Заключение Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу… Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов! Записывайтесь в онлайн-университет от GeekBrains: Изучить C, механизмы отладки и программирования микроконтроллеров; Получить опыт работы с реальными проектами, в команде и самостоятельно; Получить удостоверение и сертификат, подтверждающие полученные знания. Starter box для первых экспериментов в подарок! После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды. Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю. Источник Тиристор — принцип работы, параметры, схемы Тиристор — это устройство, состоящее из полупроводника и имеющее, как правило, лишь два активных положения: “закрытое” и “открытое”. В первом случае монокристаллический полупроводник пребывает в состоянии наименьшей электропроводности, а во втором — в наибольшей. Стоит отметить, что в двух этих устойчивых состояниях переходная фаза осуществляется при определенных обстоятельствах, но при этом процесс проходит довольно быстро. По принципу работы прибор следует соотнести с электронным переключателем, однако между ними есть небольшие различия: тиристор может перемыкаться благодаря давлению, а выключаться лишь с помощью сброса наполнения и подачи тока. Таким образом, принцип действия полупроводникового датчика не является каким-то сложным процессом. В большинстве своем, тиристор используется в качестве ключа или электронного выключателя, которые применяются в электрических механических системах. Устройство тиристора Фиксирование устойчивого состояния прибора возможно благодаря наличию ряду особенностей во внутреннем строении устройства. На представленной ниже схеме можно в этом убедиться: На этой структуре становится очевидным тот факт, что тиристор представлен в виде 2-х простых электронных транзисторов, которые не похожи по своей структуре, однако связаны между собой. Кроме того, ключевую роль в составе полупроводникового электроприбора играют три следующих звена: Катод; Анод; Электрод управления. Из-за того, что тиристор имеет четыре последовательно-соединенных диода, его переходный слой имеет такую форму: (р) — (п) — (р) — (п). Этот факт объясняет пропускную способность I, который течет лишь в единственной направленности направлении: от плюса к минусу. Говоря и описывая внешний вид тиристоров, надо сказать, что они производятся из разных корпусов, поэтому исключен вариант с простым отводом тепла, однако, из-за наличия массивного металлического корпуса, способны выдерживать большие токи. Принцип работы тиристора По принципу работы, как мы уже говорили ранее, устройство следует сравнить с электронным переключателем, ведь они оба способны пропускать ток лишь в одном направлении (к катоду от анода). При этом заметим — это будет возможно лишь в устойчивом «открытом» положении. Перейдем теперь непосредственно к рассмотрению механизма действия тиристора. Начальное состояние прибора — «закрытое». Знаком или сигналом начала переходного процесса к «открытому» можно считать возникновение напряжения, появляющееся промеж положительного электрода и управляющего вывода. Провернуть обратное действие можно следующими методами: снизить давление; понизить степень тока. В строениях с не постоянным током используется второй вариант. Но этому можно найти свое объяснение, ведь переменный ток в электросети представлен в синусоидоподобном виде, где величина его стремится к нулевому показателю и очень часто сбрасывается. Говоря о структурах с постоянным током, то чаще применяется первый вариант. Раскрытое и замкнутое положение Итак, как мы поняли, принцип действия нашего прибора различен. В строениях постоянного напряжения, уже после его кратковременного повышения, осуществляется переход из начального состояния в «открытое». Затем рассматривается два возможных варианта: «Открытое» положение может держатся и после пропажи управления напряжения на анодном выходе. Это может стать возможным если “U”, которое подают на анодный управленческий вывод, будет больше, нежели ем отпирающее “U”. Заканчивается проход электротока через устройство, по большому счету, лишь отрывом электроцепи или отключением питательного источника (при этом оба данных процесса обязаны быть кратковременными). Зачем электрический ток (когда прошло восстановление сей цепи) перестает течь. Чтобы ток все же пустить, необходимо снова подать напряжение. Устройство перейдет в «замкнутое» положение моментально же после уменьшения величин напряжений. Таким образом, в системах, где ток = constant, существует несколько способов эксплуатации нашего электроприбора: При помощи удерживания «раскрытого» состояния; Полностью противоположный первому вариант. Стоит заметить — чаще всего используется способ под 1-м номером. Условия работы тиристора в конструкциях, где напряжение не равно константе, имеют отличия. Там возврат в начальное положение проходит в автоматическом порядке, то бишь вследствие уменьшения силового тока. В том случае, когда напряжения к плюсу и минусу, подносить часто, на выводе получится так, что произойдет образование P тока некоторой частоты. Вот таким образом и настроены системы импульсного питательного корпуса, который способен формализовать синусоиду в P. Основные параметры тиристора Пришла очередь разобраться в ключевых параметрах тиристора. Безусловно, о них важно сказать и их необходимо понять. Начнем с отпирающего постоянного напряжения управления “Vy” – это есть минимальная постоянная величина напряжения на электроде управления. “Vy” вызывает некоторый переходный процесс тиристора из “закрытого” положения в “открытое”. Таким образом, именно наличие отпирающего постоянного напряжения объясняет открытие прибора и присутствия в электроцепи постоянного или переменного тока. Вторым важным параметром является величина обратного напряжения “V обр max”. Именно этот элемент демонстрирует такое значение напряжения, которое Ну и последнее – “I ср” – средняя величина тока. “I ср” показывает, какое количество тока может протекать через полупроводниковое устройство. Характеристики тиристоров Выбор тиристоров по технико-механическим свойствам определяется зависимостью напряжений в электроцепи от требуемого электротока. Рассмотрим ключевые механические характеристики тиристоров: Максимальная величина допустимого тока (данное значение показывает максимально-возможное значение она показывает максимально-возможное значение прибора в «открытом» положении); Max величина допустимого диодного тока; Прямое напряжение; Противоположные показатели напряжения; Напряжения выключения; Наименьший размер тока на управляющем электрическом проводнике; Максимальная допускаемая мощность. Технические свойства тиристора Теперь перейдем к техническим свойствам: Величина максимального обратного напряжения может достигать отметки в 100 Вольт в “открытом” состоянии; Значение напряжения в “закрытом” положении составляет 100 Вольт; Импульс открытого положения доходит до 30-ти Ампер, а вот повторяющийся — до 10-ти; Среднее значение напряжение 1,00-1,50 Вольт; Средняя величина тока не устанавливается; Временной отрезок включения и отключения прибора сильно отличаются: 10 микросекунд и 100. Виды тиристоров Есть несколько образов тиристоров, которые можно классифицировать следующими методами: по режимам контроля; согласно электропроводности; в соответствии с порядком работы; по форме управления. Итак, начнем с классификации тиристоров по режимам контроля. Следует сказать о том, что полупроводниковый инструмент обладает двумя выходными путями, различающиеся в своих открытиях. Если один открывается вводом напряжения на анодный блок, то другой — на катодный. Однако, есть некоторое замечание: подают не только напряжение, но и импульс. Если импульс связывают с управляющим выходом и катодом, то устройство будет иметь такое название: “Тиристор с катодным управлением”. В противном случае — с анодным. По электропроводности Перейдем к другой классификации устройства. Как было сказано ранее — тиристоры (единичные) проводят ток лишь в одном направлении, то есть обратного провода не существует (это первый вид электропроводности). Однако, следует оговориться, ведь мы знаем, что наш прибор работает благодаря подачи напряжения в роли ключа (переключателя), а если использовать двойной элемент, то бишь симметричный тиристор, тогда устройство сможет проводить ток сразу в двух направлениях (это есть обратная электропроводность — 2-й вид). По режиму работы Наконец, перейдем к рассмотрению последнего вида классификации. Выделяют три главных, которые чаще всего используется в современных, более усовершенствованных, полупроводниковых элементах: Также есть возможность рассказать о следующих подвидах тиристора: Запирающиеся и не запирающиеся (в первом случае: «+» прикреплен к отрицательно заряженному электроду, а «-» приложен к положительно заряженному; во 2-ом случае — противоположное положение дел); Быстродейственные (способны за короткий временной отрезок, без потери коэффициента полезного действия, перейти из “закрытого” состояния в “открытое”); Электроимпульсные (с минимальными потерями проводят переходный процесс фаз). Регулятор тиристора Важным элементом в системе тиристора является регулятор мощности. Именно его схему мы и рассмотрим: Данная структура выглядит достаточно просто. Наш диммер (в вышепредставленной конструкции) питается и работает благодаря наличию переменного тока в электросети, напряжение которой составляет 220 Вольт. Перейдем к составу, регулятор мощности в данном случае включает в себя: Диод полупроводника “vd1”; Резистор “r1” переменного назначения; Резистор “r2” постоянного назначения; Емкость малой проводимости “c1”; Переключающий прибор Тиристор “vs1”. Все величины, которые рекомендуется использовать для номинальной схемы, представлены на картинке. Кроме того, надо сказать, что в роли “vd1” (диода) можно применить либо элемент “KД-209”, либо “КУ-103В”, мощность которых больше 2-х Ватт, а напряжение не меньше 50-ти Вольт. Данная структура управляет только одним полупериодом в сетевом процессе. В том случае, если исключить отсюда 4 элемента, кроме полупроводникового диода, тогда он сможет пропустить лишь половину волны с переменным током, а нагрузка, например, на устройства паяльника или лампы накаливания придет только около пятидесяти процентов всей силы выхода. Способности тиристора Тиристор способен пропустить условные, говоря простым языком, дополнительные блоки половинчатого периода, которые срезаны “vd1” элементом. Если происходит изменение местоположения резистора “r1” переменного назначения, то работа эффективности электрической системы тоже изменится (в большую или меньшую сторону, в зависимости от напряжения). К электро-положительному выходу на конденсаторе подключен выводная управляющая трубка прибора. В том случае, когда происходит увеличение напряжения на конденсаторе, то есть величина его доходит определенного уровня, тогда он и начинает пропускать половинчатую часть “+”-го периода. Резистор переменного назначения сможет определить скоростную способность зарядки устройства. Таким образом, чем раньше зарядка достигнет максимального значения, тем быстрее произойдет открытие тиристора и ему удастся пустить половину полупериода в полярной части. Стоит сказать и о пассивном электронном компоненте, на который не попадает часть отрицательной полуволны, однако, это не опасно, ведь конденсатор имеет полярное свойство, что позволяет регулировать напряжение на концах элемента. Итак, наша структура показывает следующее: диммер способен изменить значение мощности в диапазоне 50-ти и 100-та процентов (что является абсолютной нормой для “среднестатистического паяльника”). Виды регуляторов мощности Теперь предлагаю вам рассмотреть все виды регуляторов мощности, их достаточно много, но небольшие знания о них не помешают точно никому: Диммер. Тот самый инструмент , про который шла речь в нашей структуре. Чаще всего его используют в качестве управляющего элемента мощностной нагрузки, при этом, в цепь подключается последовательно. Если мы говорим о статистике, то диммер применяется ради поправки световой яркости в различных типах ламп; Автоматический регулятор мощности. Представляет из себя электронную структуру, которая позволяет изменить показания подводимой мощности (это происходит благодаря удержанию процесса включения прибора в работу на половинчатом периоде с переменным током); Регулятор “Симосторной” мощности. Аналог автоматического регулятора, также используется в электроцепях с переменным током (применяется для мгновенных изменений различных параметров цепи); Авто-электронный регулятор мощности. Это система, предназначенная для регулирования мощности хода и для управленческого процесса в оборотах электродвигателей; “Дуговой” диммер мощности. Это элемент, имеющий ту конструкцию, которая способна обеспечить поддержку на постоянной основе определенному значению дугового горения. Применение тиристоров Итак, как вам стало известно ранее, основным назначением тиристоров является их способность управлять мощностью нагрузки. Кроме того, они имеют ряд других достоинств, а именно: быть “выпрямителем”, иметь два номинально-устойчивых положения, служить в качестве усилителя тока. Именно из-за вышеназванных качественных особенностей, полупроводниковый прибор нашел достаточно широкое применение. Тиристор используют в роли включателя/выключателя/переключателя в электрических коммутационных устройствах, ведь он способен замыкать и размыкать электроцепь. Также его активно задействуют как аппарат преобразования (так как тиристор способен генерировать постоянный ток в переменный) в солнечных батареях, в системах бесперебойного питания и в других областях, связанных с электроснабжениях. Следует сказать и о возможностях тиристора в электронном зажигании, ведь устройство эксплуатируют в двигателях внутреннего сгорания, трамблерах и аккумуляторах для работы стартера. Если говорить про быт, то надо напомнить, что полупроводниковое устройство применяется в сварке или машиностроении в качестве все того же инвертора. Где купить тиристор? Очевидно, что тиристор является достаточно эффективным электрическим аппаратом, который востребован в нынешнее время. Вы спросите: “А где его приобрести?”. Я, конечно же, посоветую вам Aliexpress. Очень крутой интернет-магазин, выручающий практически всегда. Там не только все легко и понятно, а главное дешево и разнообразно (в плане выбора товара). Что касается тиристоров, то на Aliexpress их огромное количество видов типов, есть и аналоги. В общем, пользуйтесь и приобретайте! Источник
  2. Тиристор — принцип работы, параметры, схемы
  3. Устройство тиристора
  4. Принцип работы тиристора
  5. Раскрытое и замкнутое положение
  6. Основные параметры тиристора
  7. Характеристики тиристоров
  8. Технические свойства тиристора
  9. Виды тиристоров
  10. По электропроводности
  11. По режиму работы
  12. Регулятор тиристора
  13. Способности тиристора
  14. Виды регуляторов мощности
  15. Применение тиристоров
  16. Где купить тиристор?
Читайте также:  Как быстрым способом избавится от герпеса

Способы и схемы управления тиристором или симистором

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Содержание статьи

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Источник

Тиристор — принцип работы, параметры, схемы

Тиристор — это устройство, состоящее из полупроводника и имеющее, как правило, лишь два активных положения: “закрытое” и “открытое”. В первом случае монокристаллический полупроводник пребывает в состоянии наименьшей электропроводности, а во втором — в наибольшей.

Стоит отметить, что в двух этих устойчивых состояниях переходная фаза осуществляется при определенных обстоятельствах, но при этом процесс проходит довольно быстро.

По принципу работы прибор следует соотнести с электронным переключателем, однако между ними есть небольшие различия: тиристор может перемыкаться благодаря давлению, а выключаться лишь с помощью сброса наполнения и подачи тока. Таким образом, принцип действия полупроводникового датчика не является каким-то сложным процессом.

В большинстве своем, тиристор используется в качестве ключа или электронного выключателя, которые применяются в электрических механических системах.

Устройство тиристора

Фиксирование устойчивого состояния прибора возможно благодаря наличию ряду особенностей во внутреннем строении устройства. На представленной ниже схеме можно в этом убедиться:

На этой структуре становится очевидным тот факт, что тиристор представлен в виде 2-х простых электронных транзисторов, которые не похожи по своей структуре, однако связаны между собой. Кроме того, ключевую роль в составе полупроводникового электроприбора играют три следующих звена:

  • Катод;
  • Анод;
  • Электрод управления.

Из-за того, что тиристор имеет четыре последовательно-соединенных диода, его переходный слой имеет такую форму: (р) — (п) — (р) — (п). Этот факт объясняет пропускную способность I, который течет лишь в единственной направленности направлении: от плюса к минусу.

Говоря и описывая внешний вид тиристоров, надо сказать, что они производятся из разных корпусов, поэтому исключен вариант с простым отводом тепла, однако, из-за наличия массивного металлического корпуса, способны выдерживать большие токи.

Принцип работы тиристора

По принципу работы, как мы уже говорили ранее, устройство следует сравнить с электронным переключателем, ведь они оба способны пропускать ток лишь в одном направлении (к катоду от анода). При этом заметим — это будет возможно лишь в устойчивом «открытом» положении.

Перейдем теперь непосредственно к рассмотрению механизма действия тиристора. Начальное состояние прибора — «закрытое». Знаком или сигналом начала переходного процесса к «открытому» можно считать возникновение напряжения, появляющееся промеж положительного электрода и управляющего вывода. Провернуть обратное действие можно следующими методами:

  1. снизить давление;
  2. понизить степень тока.

В строениях с не постоянным током используется второй вариант. Но этому можно найти свое объяснение, ведь переменный ток в электросети представлен в синусоидоподобном виде, где величина его стремится к нулевому показателю и очень часто сбрасывается. Говоря о структурах с постоянным током, то чаще применяется первый вариант.

Раскрытое и замкнутое положение

Итак, как мы поняли, принцип действия нашего прибора различен. В строениях постоянного напряжения, уже после его кратковременного повышения, осуществляется переход из начального состояния в «открытое». Затем рассматривается два возможных варианта:

  • «Открытое» положение может держатся и после пропажи управления напряжения на анодном выходе. Это может стать возможным если “U”, которое подают на анодный управленческий вывод, будет больше, нежели ем отпирающее “U”. Заканчивается проход электротока через устройство, по большому счету, лишь отрывом электроцепи или отключением питательного источника (при этом оба данных процесса обязаны быть кратковременными). Зачем электрический ток (когда прошло восстановление сей цепи) перестает течь. Чтобы ток все же пустить, необходимо снова подать напряжение.
  • Устройство перейдет в «замкнутое» положение моментально же после уменьшения величин напряжений.

Таким образом, в системах, где ток = constant, существует несколько способов эксплуатации нашего электроприбора:

  • При помощи удерживания «раскрытого» состояния;
  • Полностью противоположный первому вариант.

Стоит заметить — чаще всего используется способ под 1-м номером. Условия работы тиристора в конструкциях, где напряжение не равно константе, имеют отличия. Там возврат в начальное положение проходит в автоматическом порядке, то бишь вследствие уменьшения силового тока. В том случае, когда напряжения к плюсу и минусу, подносить часто, на выводе получится так, что произойдет образование P тока некоторой частоты. Вот таким образом и настроены системы импульсного питательного корпуса, который способен формализовать синусоиду в P.

Основные параметры тиристора

Пришла очередь разобраться в ключевых параметрах тиристора. Безусловно, о них важно сказать и их необходимо понять.

Начнем с отпирающего постоянного напряжения управления “Vy” – это есть минимальная постоянная величина напряжения на электроде управления. “Vy” вызывает некоторый переходный процесс тиристора из “закрытого” положения в “открытое”. Таким образом, именно наличие отпирающего постоянного напряжения объясняет открытие прибора и присутствия в электроцепи постоянного или переменного тока.

Вторым важным параметром является величина обратного напряжения “V обр max”. Именно этот элемент демонстрирует такое значение напряжения, которое Ну и последнее – “I ср” – средняя величина тока. “I ср” показывает, какое количество тока может протекать через полупроводниковое устройство.

Характеристики тиристоров

Выбор тиристоров по технико-механическим свойствам определяется зависимостью напряжений в электроцепи от требуемого электротока. Рассмотрим ключевые механические характеристики тиристоров:

  • Максимальная величина допустимого тока (данное значение показывает максимально-возможное значение она показывает максимально-возможное значение прибора в «открытом» положении);
  • Max величина допустимого диодного тока;
  • Прямое напряжение;
  • Противоположные показатели напряжения;
  • Напряжения выключения;
  • Наименьший размер тока на управляющем электрическом проводнике;
  • Максимальная допускаемая мощность.

Технические свойства тиристора

Теперь перейдем к техническим свойствам:

  1. Величина максимального обратного напряжения может достигать отметки в 100 Вольт в “открытом” состоянии;
  2. Значение напряжения в “закрытом” положении составляет 100 Вольт;
  3. Импульс открытого положения доходит до 30-ти Ампер, а вот повторяющийся — до 10-ти;
  4. Среднее значение напряжение 1,00-1,50 Вольт;
  5. Средняя величина тока не устанавливается;
  6. Временной отрезок включения и отключения прибора сильно отличаются: 10 микросекунд и 100.

Виды тиристоров

Есть несколько образов тиристоров, которые можно классифицировать следующими методами:

  • по режимам контроля;
  • согласно электропроводности;
  • в соответствии с порядком работы;
  • по форме управления.

Итак, начнем с классификации тиристоров по режимам контроля. Следует сказать о том, что полупроводниковый инструмент обладает двумя выходными путями, различающиеся в своих открытиях.

Если один открывается вводом напряжения на анодный блок, то другой — на катодный. Однако, есть некоторое замечание: подают не только напряжение, но и импульс. Если импульс связывают с управляющим выходом и катодом, то устройство будет иметь такое название: “Тиристор с катодным управлением”. В противном случае — с анодным.

По электропроводности

Перейдем к другой классификации устройства. Как было сказано ранее — тиристоры (единичные) проводят ток лишь в одном направлении, то есть обратного провода не существует (это первый вид электропроводности). Однако, следует оговориться, ведь мы знаем, что наш прибор работает благодаря подачи напряжения в роли ключа (переключателя), а если использовать двойной элемент, то бишь симметричный тиристор, тогда устройство сможет проводить ток сразу в двух направлениях (это есть обратная электропроводность — 2-й вид).

По режиму работы

Наконец, перейдем к рассмотрению последнего вида классификации. Выделяют три главных, которые чаще всего используется в современных, более усовершенствованных, полупроводниковых элементах:

Также есть возможность рассказать о следующих подвидах тиристора: Запирающиеся и не запирающиеся (в первом случае: «+» прикреплен к отрицательно заряженному электроду, а «-» приложен к положительно заряженному; во 2-ом случае — противоположное положение дел); Быстродейственные (способны за короткий временной отрезок, без потери коэффициента полезного действия, перейти из “закрытого” состояния в “открытое”); Электроимпульсные (с минимальными потерями проводят переходный процесс фаз).

Регулятор тиристора

Важным элементом в системе тиристора является регулятор мощности. Именно его схему мы и рассмотрим:

Данная структура выглядит достаточно просто. Наш диммер (в вышепредставленной конструкции) питается и работает благодаря наличию переменного тока в электросети, напряжение которой составляет 220 Вольт.

Перейдем к составу, регулятор мощности в данном случае включает в себя:

  1. Диод полупроводника “vd1”;
  2. Резистор “r1” переменного назначения;
  3. Резистор “r2” постоянного назначения;
  4. Емкость малой проводимости “c1”;
  5. Переключающий прибор Тиристор “vs1”.

Все величины, которые рекомендуется использовать для номинальной схемы, представлены на картинке. Кроме того, надо сказать, что в роли “vd1” (диода) можно применить либо элемент “KД-209”, либо “КУ-103В”, мощность которых больше 2-х Ватт, а напряжение не меньше 50-ти Вольт.

Данная структура управляет только одним полупериодом в сетевом процессе. В том случае, если исключить отсюда 4 элемента, кроме полупроводникового диода, тогда он сможет пропустить лишь половину волны с переменным током, а нагрузка, например, на устройства паяльника или лампы накаливания придет только около пятидесяти процентов всей силы выхода.

Способности тиристора

Тиристор способен пропустить условные, говоря простым языком, дополнительные блоки половинчатого периода, которые срезаны “vd1” элементом. Если происходит изменение местоположения резистора “r1” переменного назначения, то работа эффективности электрической системы тоже изменится (в большую или меньшую сторону, в зависимости от напряжения).

К электро-положительному выходу на конденсаторе подключен выводная управляющая трубка прибора. В том случае, когда происходит увеличение напряжения на конденсаторе, то есть величина его доходит определенного уровня, тогда он и начинает пропускать половинчатую часть “+”-го периода.

Резистор переменного назначения сможет определить скоростную способность зарядки устройства. Таким образом, чем раньше зарядка достигнет максимального значения, тем быстрее произойдет открытие тиристора и ему удастся пустить половину полупериода в полярной части.

Стоит сказать и о пассивном электронном компоненте, на который не попадает часть отрицательной полуволны, однако, это не опасно, ведь конденсатор имеет полярное свойство, что позволяет регулировать напряжение на концах элемента.

Итак, наша структура показывает следующее: диммер способен изменить значение мощности в диапазоне 50-ти и 100-та процентов (что является абсолютной нормой для “среднестатистического паяльника”).

Виды регуляторов мощности

Теперь предлагаю вам рассмотреть все виды регуляторов мощности, их достаточно много, но небольшие знания о них не помешают точно никому:

  • Диммер. Тот самый инструмент , про который шла речь в нашей структуре. Чаще всего его используют в качестве управляющего элемента мощностной нагрузки, при этом, в цепь подключается последовательно. Если мы говорим о статистике, то диммер применяется ради поправки световой яркости в различных типах ламп;
  • Автоматический регулятор мощности. Представляет из себя электронную структуру, которая позволяет изменить показания подводимой мощности (это происходит благодаря удержанию процесса включения прибора в работу на половинчатом периоде с переменным током);
  • Регулятор “Симосторной” мощности. Аналог автоматического регулятора, также используется в электроцепях с переменным током (применяется для мгновенных изменений различных параметров цепи);
  • Авто-электронный регулятор мощности. Это система, предназначенная для регулирования мощности хода и для управленческого процесса в оборотах электродвигателей;
  • “Дуговой” диммер мощности. Это элемент, имеющий ту конструкцию, которая способна обеспечить поддержку на постоянной основе определенному значению дугового горения.

Применение тиристоров

Итак, как вам стало известно ранее, основным назначением тиристоров является их способность управлять мощностью нагрузки.

Кроме того, они имеют ряд других достоинств, а именно: быть “выпрямителем”, иметь два номинально-устойчивых положения, служить в качестве усилителя тока. Именно из-за вышеназванных качественных особенностей, полупроводниковый прибор нашел достаточно широкое применение.

Тиристор используют в роли включателя/выключателя/переключателя в электрических коммутационных устройствах, ведь он способен замыкать и размыкать электроцепь.

Также его активно задействуют как аппарат преобразования (так как тиристор способен генерировать постоянный ток в переменный) в солнечных батареях, в системах бесперебойного питания и в других областях, связанных с электроснабжениях.

Следует сказать и о возможностях тиристора в электронном зажигании, ведь устройство эксплуатируют в двигателях внутреннего сгорания, трамблерах и аккумуляторах для работы стартера.

Если говорить про быт, то надо напомнить, что полупроводниковое устройство применяется в сварке или машиностроении в качестве все того же инвертора.

Где купить тиристор?

Очевидно, что тиристор является достаточно эффективным электрическим аппаратом, который востребован в нынешнее время. Вы спросите: “А где его приобрести?”.

Я, конечно же, посоветую вам Aliexpress. Очень крутой интернет-магазин, выручающий практически всегда. Там не только все легко и понятно, а главное дешево и разнообразно (в плане выбора товара). Что касается тиристоров, то на Aliexpress их огромное количество видов типов, есть и аналоги. В общем, пользуйтесь и приобретайте!

Источник

Оцените статью
Разные способы