- Внутренняя энергия вещества и способы ее изменения
- теория по физике 🧲 термодинамика
- Виды теплопередачи
- Теплопроводность
- Конвекция
- Излучение
- Количество теплоты
- Сгорание топлива
- Каким способом можно изменить внутреннюю энергию газа
- Способы изменения внутренней энергии
- Способы изменения внутренней энергии
- ВНУТРЕННЯЯ ЭНЕРГИЯ И РАБОТА
- ВНУТРЕННЯЯ ЭНЕРГИЯ И ТЕПЛОПЕРЕДАЧА
Внутренняя энергия вещества и способы ее изменения
теория по физике 🧲 термодинамика
Внутренняя энергия сосредоточена «внутри» вещества и складывается из потенциальной энергии взаимодействующих молекул (атомов) и кинетической энергии их движения:
U = ∑ E k 0 + ∑ E p 0
∑ E k 0 — кинетическая энергия молекул (атомов), которая зависит от скорости их движения. Она изменяется только при изменении температуры. В процессе агрегатных переходов кинетическая энергия молекул остается неизменной.
∑ E p 0 — потенциальная энергия взаимодействия молекул, которая зависит от расстояния между ними. Она изменяется при изменении температуры и объема. Например, в процессе агрегатных переходов изменяется именно потенциальная энергия молекул.
Способы изменения внутренней энергии:
- Совершение работы (за счет трения или ударов).
- Испарение (в процессе испарения внутренняя энергия жидкости понижается).
- Теплопередача (приведение в соприкосновение с более холодным или более нагретым телом).
Виды теплопередачи
Выделяют три вида теплопередачи: теплопроводность, конфекцию и излучение.
Теплопроводность
Теплопроводность — способность тел переносить внутреннюю энергию без переноса вещества от более нагретых участков тела к более холодным.
При теплопроводности происходит постепенное увеличение скорости движения молекул. Это возможно только благодаря межмолекулярному взаимодействию. Поэтому теплопроводность в твердых телах происходит быстрее, чем в жидкостях. В газах она осуществляется еще медленнее. Для сохранения тепла используют пористые материалы, в которых много воздуха. Воздух — это смесь газов, поэтому он плохо переводит тепло.
Важно! В вакууме теплопроводность невозможна.
Конвекция
Конвекция — это перенос внутренней энергии, сопровождающийся переносом вещества.
При конвекции теплые слои жидкости или газа поднимаются, а холодные опускаются. Конвекция осуществляется только в жидкостях и газах.
Важно! В твердых телах и в вакууме конвекция невозможна.
Излучение
Излучение — это перенос теплоты в пространстве, осуществляемый в результате распространения электромагнитных волн, энергия которых при взаимодействии с веществом переходит в тепло.
Энергию излучают все нагретые тела. Чем больше нагрето тело, тем сильнее излучение. Теплопередача за счет излучения возможна в любой среде, в том числе и в вакууме.
Темные поверхности хорошо поглощают излучение, но быстро отдают энергию при охлаждении. Зеркальные и светлые поверхности отражают часть излучения и медленно остывают.
Количество теплоты
Количество теплоты Q (Дж) — физическая величина, которая показывает, на сколько изменяется внутренняя энергия вещества в процессе теплопередачи:
Если внутренняя энергия вещества увеличивается, то Q > 0. Это происходит при нагревании, плавлении и кипении.
Если внутренняя энергия вещества уменьшается, Q Формула теплоты при нагревании или охлаждении
При нагревании или охлаждении вещество получает (отдает) количество теплоты, определяемое по формуле:
Q = c m Δ t = c m ( t − t 0 )
∆t — изменение температуры вещества (в о С или К), t0— начальная температура вещества, t — конечная температура вещества, m — его масса (кг), c — удельная теплоемкость вещества (Дж/(кг∙К)).
Удельная теплоемкость вещества показывает, какое количество теплоты необходимо затратить, чтобы нагреть 1 кг вещества на 1 градус. Такое же количество теплоты выделится при охлаждении 1 кг этого вещества на 1 градус.
Внимание! Удельная теплоемкость вещества — табличная величина.
Количество теплоты также определяется формулой:
∆T — изменение температуры в Кельвинах, а C — теплоемкость вещества.
Теплоемкость вещества показывает, сколько теплоты поглощает тело при нагревании на 1 К. Измеряется в Дж/кг. Численно теплоемкость равна произведению массы вещества на его удельную теплоемкость:
Пример №1. Температура медного образца массой 100 г увеличилась на 40 о С. Какое количество теплоты получил образец? Удельная теплоемкость меди равна 380 Дж/(кг∙К).
Q = c m Δ t = 380 · 0 , 1 · 40 = 1520 ( Д ж )
Сгорание топлива
При сгорании топлива выделяется количество теплоты, определяемое формулой:
m — масса сгоревшего топлива (кг), q — удельная теплота сгорания топлива (Дж/кг).
Удельная теплота сгорания показывает, какое количество теплоты выделяется при полном сгорании 1 кг данного вида топлива.
Внимание! Удельная теплота сгорания — табличная величина.
Пример №2. Сгорело 5 сухих березовых поленьев. Каждый весил 1 кг. Определить, количество выделенной теплоты, если удельная теплота сгорания березовых дров составляет 15 МДж/кг.
15МДж = 15∙10 9 Дж
Так как сгорело 5 поленьев по 1 кг, то всего сгорело 5 кг сухих березовых дров. Отсюда:
Q = q m = 5 · 15 · 10 9 = 75 · 10 9 ( Д ж ) = 75 ( М Д ж )
Алгоритм решения
- Определить тип теплопередачи.
- Вспомнить, как происходит этот тип теплопередачи.
- Сделав анализ рисунка, установить, какой брусок имеет указанную в задаче температуру.
Решение
Так как это твердые тела, поверхности которых соприкасаются друг с другом, и перенос тепла происходит без переноса вещества, то этот вид теплопередачи является теплопроводностью. Тепло всегда направлено от более нагретого тела к менее нагретому.
На рисунке видно, что самым нагретым телом является нижний брусок, так как он только отдает тепло, но не принимает его. Средний брусок справа менее нагрет, чем нижний, так как принимает от него тепло. Но он более теплый по сравнению со средним бруском слева, так как он делится с ним теплом. И оба этих бруска отдают свою энергию верхнему бруску, который сам только принимает тепло, но не отдает его. Следовательно, именно он имеет температуру +40 о С.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Источник
Каким способом можно изменить внутреннюю энергию газа
Связь внутренней энергии с температурой
Кинетическая энергия движения частиц и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.
Внутренняя энергия тела не является постоянной величиной и связана с изменением температуры тела:
1. при повышении температуры внутренняя энергия тела увеличивается, т.к. молекулы тела начинают активнее двигаться, расстояние между ними увеличивается и возрастает их кинетическая и потенциальная энергия;
2. при понижении температуры внутренняя энергия тела уменьшается, т.к. молекулы тела начинают двигаться менее активно, расстояние между ними уменьшается и понижается их кинетическая и потенциальная энергия.
Таким образом, температура – это главная характеристика внутренней энергии тела.
История развития представлений об изменении внутренней энергии
Перед тем, как рассмотреть конкретные возможные причины процесса изменения внутренней энергии тела заметим, что теория, которая связывает энергию движения и взаимодействия частиц со внутренней энергией тела, сложилась не сразу.
Например, почти до конца XIX века считалось, что существует такая условная субстанция, как теплород. Считалось, что когда теплород втекает в тело, то его температура увеличивается, как и внутренняя энергия, а когда вытекает, температура с внутренней энергией уменьшается. Понятие теплорода было введено в конце XVIII века Лавуазье, а уже на рубеже XVIII и XIX веков были проведены первые эксперименты, подтверждавшие несостоятельность этой теории.
Кроме того, для описания процесса сжигания топлива существовала аналогичная теория, которая говорила, что существует такая гипотетическая материя, как флогистон. Считалось, что он содержится во всех горючих веществах и при их горении высвобождается и дает высокую температуру. Термин был введен впервые в начале XVIII века учеными Иоганном Бехером и Георгом Шталем . Позже и теория флогистона была раскритикована и сегодня не упоминается в научных трудах, как и теория теплорода.
Мы будем рассматривать возможные варианты изменения внутренней энергии с точки зрения развития науки, поэтому сначала обсудим изменение внутренней энергии из-за совершения работы. Убедиться в том, что совершение работы влияет на процесс изменения внутренней энергии, можно на простом опыте – потрите руки друг о друга, и вы заметите, как ладони нагреваются, это и будет свидетельствовать об изменении внутренней энергии. Что демонстрирует этот опыт? Он наглядно демонстрирует, что при совершении механической работы (трение ладоней) повышается их внутренняя энергия.
Изменение внутренней энергии вследствие совершения работы
Вы уже знакомы с понятием механическая работа тела, она связана с перемещением тела при приложении к нему определенной силы. Если совершается механическая работа, то меняется энергия тела, аналогичное можно утверждать конкретно про внутреннюю энергию тела. Это удобно изобразить на схеме:
Первые опыты по доказательству несостоятельности теории теплорода и подтверждению влияния процесса совершения работы на изменение внутренней энергии тела провел английский инженер и физик Бенджамин Румфорд, который в конце XVIII века при изготовлении пушек занимался сверлением их ствола. Он заметил, что при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение конской тягой. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура резко поднялась. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой (см. Рис. 1). В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Румфорд объяснил это явление с помощью представления о теплоте как особом виде движения.
Опыт Румфорда доказал, что процесс совершения работы оказывает непосредственное влияние изменение внутренней энергии тела, и внутренняя энергия тела может быть изменена при совершении работы.
Таким образом, работа является мерой изменения внутренней энергии при превращении механической энергии во внутреннюю или внутренней энергии в механическую.
Изменение внутренней энергии вследствие теплопередачи
Второй способ изменения внутренней энергии тела мы можем легко наблюдать каждый день в повседневной жизни, и он был давно всем известен – это теплопередача.
Теплопередача – это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Процессы теплопередачи делятся на три вида, которые удобно изобразить на схеме:
Более подробно о каждом из этих видов теплопередачи мы поговорим на последующих уроках.
Отметим, что процессы теплопередачи и совершения работы, как правило, протекают параллельно и одновременно влияют на изменение у тела внутренней энергии.
Теперь мы можем изобразить два варианты изменения внутренней энергии тела на схеме:
На следующем уроке мы уделим особое внимание описанию процесса теплопроводности при теплопередаче.
Источник
Способы изменения внутренней энергии
Конспект по физике для 8 класса «Способы изменения внутренней энергии». ВЫ УЗНАЕТЕ: Как можно изменить внутреннюю энергию тела. Что такое теплопередача.
Способы изменения внутренней энергии
Чтобы понять, каким способом можно изменить внутреннюю энергию, необходимо знать, от чего она зависит. Мы уже знаем, что внутренняя энергия зависит от средней кинетической энергии частиц, составляющих тело, и, следовательно, от его температуры. Значит, для изменения внутренней энергии тела нужно изменить его температуру.
ВНУТРЕННЯЯ ЭНЕРГИЯ И РАБОТА
Совершая работу, мы можем изменить, например, потенциальную энергию тела. Подняв тело над поверхностью земли, мы тем самым увеличили его потенциальную энергию. Совершив работу, можно также изменить и внутреннюю энергию тела.
При трении тела нагреваются. Если потереть одну ладонь о другую, кожа нагреется. Если быстро спуститься по спортивному канату, то кожу на ладонях можно даже обжечь. Нагревание при трении люди использовали в древности для добывания огня. В наше время одним из способов добывания огня является трение спичечной головки о спичечный коробок.
В специализированной физической лаборатории при соблюдении всех мер предосторожности можно провести следующий опыт. На подставке укрепляется тонкостенная латунная трубка. В неё наливается немного эфира, и она закрывается пробкой. Затем трубка обвивается верёвкой. Если быстро натирать трубку верёвкой, то через некоторое время эфир закипит и пар вытолкнет пробку.
Этот опыт показывает, что внутренняя энергия эфира увеличилась, ведь он нагрелся и даже закипел. А причиной изменения внутренней энергии эфира стала наша работа против сил трения.
Именно из-за того, что температура в сосуде понижается, и появляется туман. Как и почему это происходит, мы с вами обсудим немного позднее. Всем, кто открывал бутылки с лимонадом, это явление хорошо знакомо: над горлышком появляется туман.
Увеличить внутреннюю энергию тела можно путём деформации. Если несколько раз ударить молотком по свинцовому шарику, он деформируется и заметно нагреется. Совершённая при этом работа приведёт к изменению взаимного расположения атомов свинца и к изменению характера их движения.
Рассмотрим пример, когда совершённая работа приводит к уменьшению внутренней энергии тела. В стеклянный толстостенный сосуд, закрытый резиновой пробкой, с помощью насоса нагнетается воздух, содержащий водяной пар. Через некоторое время пробка вылетает из сосуда, а в самом сосуде образуется туман, представляющий собой мельчайшие капельки воды.
Накачивая воздух в сосуд, мы совершаем работу. Число молекул в сосуде возрастает, увеличивается частота и сила их ударов, возрастает скорость их движения, и, следовательно, увеличивается внутренняя энергия и температура воздуха в сосуде. Затем сжатый воздух выталкивает пробку, совершая работу. При этом его внутренняя энергия уменьшается, и температура воздуха в сосуде понижается.
ВНУТРЕННЯЯ ЭНЕРГИЯ И ТЕПЛОПЕРЕДАЧА
Внутреннюю энергию тела можно изменить и без совершения механической работы. Например, внутреннюю энергию воды можно увеличить, нагрев на плите чайник. Если поставить горячую кастрюлю на холодную подставку, то с течением времени она остынет. Во всех приведённых примерах внутренняя энергия изменяется, хотя работа при этом не совершается.
Опустим металлическую ложку в стакан с горячей водой. Начальная температура воды выше температуры ложки. Значит, средняя кинетическая энергия молекул воды больше кинетической энергии частиц холодного металла. Молекулы воды, сталкиваясь с атомами металла, передают им часть своей энергии. При этом кинетическая энергия частиц металла увеличивается, а кинетическая энергия молекул воды уменьшается. В результате температура воды уменьшится, а температура ложки увеличится. С течением времени их температуры станут равными.
При непосредственном контакте двух тел с разными температурами происходит передача энергии от тела с более высокой температурой к телу, температура которого изначально была ниже. При этом внутренняя энергия тела с более высокой температурой уменьшается, а внутренняя энергия тела с меньшей температурой увеличивается.
Процесс передачи энергии от более нагретого тела или участков тела к менее нагретым называют теплопередачей или теплообменом.
Когда температуры тел становятся равными, теплопередача прекращается. При этом процесс теплопередачи необратим. Это означает, что невозможен самопроизвольный процесс передачи внутренней энергии от холодного тела к нагретому.
В XVIII в. французскими химиками была выдвинута идея теплорода — некой субстанции, объясняющей явления, связанные с теплотой и теплопередачей. Считалось, что частицы теплорода отталкиваются друг от друга, но притягивают частицы других веществ. Повышение температуры тела связывалось с увеличение количества теплорода, а понижение температуры — с его уменьшением. В середине XIX в. теория теплорода была отвергнута. Ей на смену пришла молекулярно-кинетическая теория строения вещества.
Бенджамин Томпсон (граф Румфорд) (1753 — 1814) Английский физик. В его честь Лондонское королевское общество учредило награду для выдающихся учёных — медаль Румфорда.
В 1798г. Румфорд сделал важное наблюдение: при высверливании канала в пушечном стволе выделяется большое количество тепла. Для более точного исследования он проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал поместили тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение. Термометр, вставленный в цилиндр, показал, что за 30 мин операции температура повысилась на десятки градусов Цельсия. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой. В процессе сверления вода нагрелась и спустя 2,5 ч закипела.
Этот опыт Румфорд считал доказательством того, что теплота является формой движения.
Вы смотрели Конспект по физике для 8 класса «Способы изменения внутренней энергии».
Источник