Тест «Тепловые явления»
Тест по теме «Тепловые явления»
1. Что называют тепловым движением?
А. Равномерное движение отдельной молекулы. Б. Непрерывное беспорядочное движение большого числа молекул. В.Упорядоченное движение большого числа молекул. Г. Прямолинейное движение отдельной молекулы.
2. Какое из предложений является определением внутренней энергии?
А. Энергия, которая определяется положением взаимодействующих тел или частей одного и того же тела. Б. Энергия движения и взаимодействия частиц, из которых состоит тело. В. Энергия, которой обладает любое движущееся тело.
3. Каким способом можно изменить внутреннюю энергию тела?
А. Только совершением работы. Б. Только теплопередачей. В. Совершением работы и теплопередачей. Г.Внутреннюю энергию изменить нельзя
4. Медную пластину поместили на горячую электрическую плиту. Каким способом при этом изменяется внутренняя энергия пластины?
А. Теплопередачей. Б. Совершением работы. В. Теплопередачей и совершением работы. Г. Внутренняя энергия не изменяется
5. Какой вид теплопередачи сопровождается переносом вещества?
А. Конвекция. Б. Теплопроводность. В. Излучение. Г. Конвекция, теплопроводность. Д. Конвекция, излучение. Е. Конвекция, теплопроводность, излучение. Ж.Теплопроводность, излучение.
6.Назовите физическую величину, показывающую, какое количество теплоты необходимо для нагревания вещества массой 1 кг на 1° С?
А. Удельная теплота сгорания. Б.Удельная теплота парообразования. В. Удельная теплота плавления. Г. Удельная теплоёмкость.
7. Какой буквой обозначают удельную теплоту парообразования?
А. L . Б. Q . В. с. Г. q.
8. В каком процессе количество теплоты вычисляют по формуле Q = q * m ?
А. При превращении жидкости в пар. Б. При плавлении. В. При сгорании топлива. Г. При нагревании вещества
9. Как изменится скорость испарения жидкости при повышении её температуры, если остальные условия останутся без изменений?
А. Увеличится. Б. Уменьшится. В. Останется неизменной.
10. Как изменяется температура вещества от начала процесса кристаллизации до его окончания?
А. Остается неизменной. Б. Понижается. В. Повышается. Г. У одних веществ повышается, у других понижается.
11. Железо плавится при постоянной температуре. Поглощает или выделяет железо энергию при этом?
А. Не поглощает и не выделяет. Б. Выделяет. В. Поглощает. Г. Может поглощать, а может и выделять.
12. Каким способом передаётся энергия от Солнца к Земле?
А. Конвекцией. Б. Теплопроводностью. В. Конвекцией и теплопроводностью. Г. Излучением. Д. Конвекцией и излучением. Е. Теплопроводностью и излучением. Ж. Конвекцией, теплопроводностью и излучением.
13. Какое количество теплоты необходимо затратить, чтобы расплавить 10 кг свинца при температуре плавления? Удельная теплота плавления свинца 2,5 * 10 ⁴ Дж/кг.
А. 2,5*10 ⁶ Дж/кг. Б. 2,5* 10⁵ Дж/кг. В. 2,5*10 ⁴ Дж/кг. Г. 2,5*10 ³ Дж/кг.
14. Какое количество теплоты необходимо затратить, чтобы нагреть 250 кг стали от 20 до 1020 ° С? Удельная теплоёмкость стали равна 500 Дж/кг *° С.
А. 1,25 *10⁸ Дж. Б. 2,5 *10 ⁵ Дж. В.5*10 ⁵ Дж. Г. 1,25 *10⁵ Дж.
15. В двигателе внутреннего сгорания клапаны закрыты, образовавшиеся при сгорании горючей смеси газы давят на поршень и толкают его. Какой это такт?
А. Выпуск. Б. Впуск. В. Рабочий ход. Г.Сжатие.
16. Размах колебаний атомов в веществе увеличивается, а порядок в расположении атомов остаётся неизменным. Какому процессу это соответствует?
А. Кипению. Б. Кристаллизации. В. Испарению. Г. Плавлению. Д. Нагреванию.
17. Как изменяется внутренняя энергия вещества при его переходе из жидкого состояния в твёрдое при постоянной температуре?
А. У разных веществ изменяется по-разному. Б. Остаётся постоянной. В. Может увеличиваться или уменьшаться в зависимости от внешних условий. Г. Уменьшается. Д. Увеличивается.
18. В термос и стакан налили холодную воду. Оба сосуда закрыли и поместили в тёплую комнату. В каком сосуде больше повысится температура воды через 1 час?
А. В обоих сосудах одинаково. Б. В термосе. В. В стакане. Г. В термосе совершенно не изменится, в стакане повысится.
19. В какой из сосудов калориметра нужно налить воду для определения удельной теплоёмкости тела?
А. Во внутренний сосуд. Б. Во внешний сосуд. В. В любой из сосудов. Г.в промежуток между внутренним и внешним сосудами.
1. Температуру газа увеличили. Как изменилось время между двумя соударениями каждой отдельной молекулы с соседними молекулами?
А. Уменьшилось. Б.Увеличилось. В. Не изменилось. Г. Сначала уменьшилось, потом увеличилось.
2. От чего зависит внутренняя энергия тела?
А. От температуры тела. Б. Агрегатного состояния вещества. В. Механического движения тела. Г. Положения тела относительно других тел. Д. От температуры тела, агрегатного состояния вещества.
3. Может ли измениться внутренняя энергия тела при совершении работы и теплопередаче?
А. Внутренняя энергия тела измениться не может. Б. Может только при совершении работы. В. Может только при теплопередаче. Г. Может при совершении работы и теплопередачи.
4.Зажатую плоскогубцами медную проволоку сгибают и разгибают несколько раз. Изменится ли при этом внутренняя энергия проволоки? Если да, то каким способом?
А. Теплопередачей. Б. Совершением работы. В. Теплопередачей и совершением работы. Г. Внутренняя энергия проволоки не изменяется.
5. Какой вид теплопередачи не сопровождается переносом вещества?
А. Излучение. Б. Конвекция. В. Теплопроводность. Г. Излучение, конвекция, теплопроводность. Д. Излучение, конвекция. Е. Излучение, теплопроводность. Ж.Конвекция, теплопроводность.
6. Назовите физическую величину, показывающую, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.
А. Удельная теплота сгорания. Б.Удельная теплота парообразования. В. Удельная теплота плавления. Г.Удельная теплоёмкость.
7.Какой буквой обозначают удельную теплоёмкость?
А. L . Б. Q . В. с. Г. q.
8. При каком процессе количество теплоты вычисляют по формуле Q = c m ( t ₂ — t ₁ ) ?
А. При превращении жидкости в пар. Б.при плавлении. В. При сгорании топлива. Г. при нагревании тела.
9.От чего зависит скорость испарения жидкости?
А. От рода жидкости. Б. От ветра над жидкостью. В. От температуры. Г. От площади поверхности. Д. От всех перечисленных в ответах А-Г условий.
10.Как изменяется температура жидкости от начала кипения до полного её выкипания?
А. Повышается. Б. Понижается. В.Остаётся неизменной. Г. У одних жидкостей повышается, у других понижается.
11.Вода превращается в лёд при постоянной температуре. Поглощает или выделяет вода энергию при этом?
А. Может поглощать, а может и выделять. Б. Не поглощает и не выделяет. В. Поглощает. Г. выделяет.
12.Какой вид теплопередачи преобладает при переносе энергии от котла к батареям водяного отопления в больших зданиях?
А. Вынужденная конвекция. Б. Естественная конвекция. В. Теплопроводность. Г. Излучение.
13. Какое количество теплоты необходимо для обращения в пар 5 кг жидкого эфира при температуре кипения? Удельная теплота парообразования эфира составляет 0,4 * 10 ⁶ Дж/кг.
А. 2*10 ⁷ Дж. Б. 8* 10 ⁴ Дж. В. 2* 10 ⁶ Дж. Г. 2* 10 ⁵ Дж.
14. Какое количество теплоты необходимо затратить, чтобы нагреть 100 кг кирпича от 20 до 320 ° С? Удельная теплоёмкость кирпича равна 750 Дж/кг*° С.
А. 2,25 *10 ⁵ Дж. Б. 2.25 * 10 ⁷ Дж. В. 250 Дж. Г.7,5 * 10 ⁴ Дж.
15. В двигателе внутреннего сгорания клапаны закрыты, поршень движется, сжимая горючую смесь. Какой это такт?
А. Рабочий ход. Б. Выпуск. В. Впуск. Г. Сжатие
16. Размах колебаний атомов в веществе уменьшается, а порядок в расположении атомов остаётся неизменным. Какому процессу это соответствует?
А. Остывание кристалла. Б. Кристаллизация жидкости. В. Конденсация. Г. Плавление кристалла. Д.Испарение.
17. Как изменяется внутренняя энергия вещества при его переходе из жидкого состояния в газообразное при постоянной температуре?
А. Может увеличиваться или уменьшаться в зависимости от внешних условий. Б. Остаётся постоянной. В. У разных веществ изменяется по- разному. Г.Уменьшается. Д.Увеличивается.
18. Вода, термос и стакан охлаждены до температуры холодильника. Воду налили в термос и стакан. Оба сосуда закрыли и поместили в холодильник. Как изменится температура воды в термосе и стакане через 1 час?
А. В термосе не изменится, в стакане понизится. Б. В обоих случаях понизится. В. В термосе понизится, в стакане не изменится. Г.В обоих случаях не изменится.
19. При выполнении измерений теплоёмкости тела при помощи калориметра можно получить более точный результат, если в пространстве между двумя сосудами калориметра находится:
А. Вакуум. Б. Воздух. В. Вода. Г. Во всех случаях А-В точность измерений одинакова.
Источник
Каким способом изменилась внутренняя энергия пластинки
Внутреннюю энергию тела можно изменить:
1) теплопередачей (теплопроводностью, конвекцией и излучением);
2) совершением механической работы над телом (трение, удар, сжатие и др.).
Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.
$$ = \Delta U$$ — количество теплоты. | (8) |
Рассмотрим эти процессы более подробно.
1. Виды теплопередачи
А)
явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).
Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.
В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).
Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.
Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.
В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:
Здесь | $$ k$$ – коэффициент теплопроводности вещества слоя, |
$$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3), | |
$$ h$$ – толщина слоя вещества, | |
$$ t$$ – время наблюдения, | |
$$ \Delta T= |
Например, тепловая энергия уходит из комнаты через стену на улицу.
$$ S$$ – площадь поверхности стены,
- $$ h$$ – толщина слоя вещества, составляющего стену.
- $$ \Delta T$$ – разность температур между комнатой $$ \left(
_<1>\right)$$ и улицей $$ \left( _<2>\right)$$;
$$ k$$ – коэффициент теплопроводности вещества стены.
Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).
Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.
называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.
Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.
Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.
На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.
В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.
Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.
Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:
$$I=\sigma · | (10) |
Где `sigma=5,67*10^(-8)` `»Вт»//»м»^2«»К»^4` — постоянная Стефана-Больцмана.
(Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.)
В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.
2. Работа и изменение внутренней энергии.
Работа газа при расширении и сжатии
Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.
При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.
Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.
Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна
Здесь $$ F$$ – сила, действующая на поршень со стороны газа,
- $$ p$$ – давление газа,
- $$ S$$ – площадь поверхности поршня,
$$ \Delta V$$ – изменение объёма газа.
В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом . Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$
Нетрудно убедиться, что $$ <>^<">S< >^<">=^<\text<'>>$$, т. е. работа газа при расширении от объёма $$
Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.
Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ _=
_·\Delta
Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ \Delta
так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.
При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:
Работа газа численно равна площади фигуры под графиком $$ p\left(V\right)$$.
Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:
В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.
Источник