- Как питаются растения?
- Популярные материалы
- Today’s:
- Как питаются растения?
- Корневое питание
- Воздушное питание
- Как питаются растения паразиты. Растения-паразиты
- Как питаются аквариумные растения. Питание аквариумных растений
- Сельское хозяйство | UniversityAgro.ru
- Популярные статьи
- Приложения для Android
- Питание растений
- Типы питания растений
- Условия питания растений
- Виды питания растений
- Питание растений в разные периоды вегетации
- Таблица. Влияние питания растений фосфором на урожайность ячменя 1
- Таблица. Питание азотом и урожай ячменя, г на сосуд 2
- Таблица. Потребление питательных веществ яровыми зерновыми культурами, % от максимального 3
- Таблица. Динамика потребления питательных элементов капустой, % от максимального 4
Как питаются растения?
Популярные материалы
Today’s:
Как питаются растения?
Ни для кого не секрет, что жизнедеятельность и развитие любого живого организма не может происходить без питания. Питание дает возможность организмам расти, видоизменяться, размножаться, а также обусловливает многие другие процессы в течение жизни. Как питаются животные, рыбы, люди — знает каждый. А как питаются растения? Ведь у них нет ни рта, ни зубов, ни пищеварительной системы. Многие столетия ученые изучали этот интереснейший процесс. В результате было выявлено, что растения используют для получения питательных веществ два способа — корневое и воздушное питание.
Корневое питание
Корневая система у разных растений различается по своей мощности — чтобы это увидеть, достаточно сравнить корни, например, моркови и картофеля. Однако для всех едино правило, что наибольшей способностью к всасыванию минеральных веществ из почвы обладают молодые корешки. С течением времени они немного грубеют и теряют эту способность. Поэтому корневая система имеет не только один корень, а стремится к появлению новых корешков и выглядит кустисто.
Корни поглощают питательные вещества, находящиеся в почве, не напрямую, а с помощью воды. Из устьиц на листьях растений испаряется влага и образуется давление снизу вверх, которое стремится заполнить пустоты после испарившейся жидкости. Минеральные вещества растворяются в воде и всасываются под действием этого давления через корневую систему в растение. Сначала они заполняют межклеточное пространство, а затем проникают и внутрь клеток растений.
Зная о таком способе питания, мы понимаем важность своевременного полива наших растений, особенно в период засухи. Ведь испарения в такой период увеличиваются и растениям необходимо «пополнить запасы» веществ, а без полива и воды они не смогут этого сделать.
Воздушное питание
Фотосинтез — процесс питания растений, при котором происходит переработка неорганической энергии в органическую. В зеленых частях растений присутствует вещество хлорофилл. Растения питаются поглощением из воздуха углекислого газа. Углекислый газ попадает в клетки, содержащие хлорофилл, и там под действием солнечных лучей перерабатывается в органические вещества и воду. При этом происходит еще один немаловажный процесс — выделение растениями кислорода в окружающую среду. Этим умело пользуются экологи, создавая зеленые насаждения в местах с загрязненным воздухом.
Исходя из знаний о таком типе питания растений, мы понимаем важность попадания на них солнечного света. Не зря, например, принято ставить домашние цветы на подоконники.
Узнайте больше интересных фактов о жизнедеятельности растений из статьи.
Как питаются растения паразиты. Растения-паразиты
Растения-паразиты — экологическая группа покрытосеменных растений ( Magnoliophyta ), получающих питательные вещества непосредственно из тканей других растений . Связь с растением-хозяином паразит осуществляет через гаустории , возникающие в результате преобразования зародышевого корня или, в редких случаях, тканей стебля . В настоящее время известно около 4100 видов растений-паразитов, относящихся к 19 семействам .
Растения-паразиты могут быть классифицированы следующим образом:
Для полупаразитов к одному виду может быть применено по одному элементу из трёх множеств терминов, например:
Голопаразиты всегда являются облигатными, таким образом требуются только 2 термина, например:
Представители семейства Раффлезиевые (около 30 видов) паразитируют на растениях из рода Tetrasigma семейства Виноградовых . Паразит почти целиком находится в корне или стебле растения-хозяина: снаружи располагаются только цветки. Наиболее известный представитель — раффлезия Арнольда , которая характеризуются очень крупными цветками (до метра в диаметре).
В южных районах России довольно часто на ветках тополей и других деревьев поселяется растение омела — сильно ветвящийся многолетний кустарник. Это растение способно к фотосинтезу, но воду и другие минеральные вещества оно получает через гаусторию, проникающую в ксилему дерева-хозяина.
Представители семейства Заразиховых лишены хлорофилла и существуют целиком за счёт растения-хозяина, на котором растут. Широко известны представители рода Петров крест . Его мясистые бесцветные стебли с односторонней кистью малиново-красных цветов появляются в российских лесах ранней весной. Находящийся в почве корень ветвится и образует крестовидные соединения, от которых и произошло название растения.
Как питаются аквариумные растения. Питание аквариумных растений
Много написано об удобрениях для аквариумных растений, каждый отдаёт предпочтение какой-то фирме для своих условий. А всё гениальное так просто – заложить питательный грунт и поддерживать рост добавлением жидких удобрениябрений(с оптимальными параметрами аквариумной воды), но написать просто, а на самом деле, то растения не растут, то водоросли «поражают».
Растения способны поглощать все элементы периодической системы. Между тем для нормального жизненного цикла растительного организма необходима лишь определенная группа основных питательных элементов, функции которых в растении не могут быть заменены другими химическими элементами. В эту группу входят 19 элементов:
Углерод, С, Водород, Н, Азот, N, Кислород, O, Фосфор, P, Сера, S, Калий, K, Кальций, Ca, Магний, Mg, Железо, Fe, Марганец, Mn, Медь, Cu, Цинк, Zn, Молибден, Mo. Бор, B, Хлор, Cl, (Натрий), Na, (Кремний), Si, (Кобальт), Ko.
Среди этих основных питательных элементов лишь 16 являются минеральными, так как С, Н и О поступают в растения как СО2, О2 и Н2О. Натрий, кремний и кобальт приведены в скобках, поскольку их необходимость для всех высших растений пока не установлена. Натрий поглощается в относительно высоких количествах только некоторыми видами. Исключение какого-либо из макро- или микроэлементов приводит к нарушению структуры и обмена
веществ растений, торможению роста и даже к их гибели.
Растения не могут поглощать твёрдые частицы и чтобы минеральные соли могли быть поглощены, они должны быть в растворённой форме. Молекулы солей распадаются в водном растворе на ещё более мелкие частицы – ионы, а процесс называется ионизацией. И так, питательные соли поглощаются растениями в ионизированной форме, поэтому для доступности удобрения применяют хелаторы (Трилон Б,EDTA, HEDTA, DTPA…). Питательный раствор в аквариуме должен иметь меньшую концентрацию, чем сок растения, только в этом случае растения смогут поглощать его. Даже не большое повышение концентрации удобрения уже значительно затрудняет его поглощение. Поэтому очень, полезно не лениться подменивать аквариумную воду 30% в неделю, а во время закладки питательного грунта первые дни делать несколько дней подряд подмены.
Растения запасают энергию и поглощают необходимые для роста вещества в течение светового дня, а ночью идёт синтез белков, жиров и углеродов (нарастание массы). Поэтому увеличение светового дня для тропических растений сокращает период синтеза. Так же вредно и сокращение освещения (менее 8 часов), когда растения не успевают запастись питательными веществами и рост приостанавливается.
Температура в аквариуме играет большую роль при обмене процессов, так при понижении до 15-16 скорость обмена уменьшается в 4 раза, чем при 24-26. Всасывание питательных веществ замедляется, и соответственно растения растут медленнее. На семинаре Клифф Ху (известный аква-дизайнер из Гонконга) рассказывал, что в его аквариумах температура 15 и он для этого применяет специальные холодильники. При дизайне нет необходимости в быстром росте растений, достаточно посадить их много и поддерживать в хорошем состоянии. Другое дело размножение растений, тогда повышение температуры ускорит процессы и рост.
Жесткость воды оказывает влияние на рост растений. Избыток кальция отрицательно сказывается на поглощении железа, цинка, марганца. Двухвалентный ион кальция присутствует во всех клеточных структурах и стабилизирует их функции. Особенно большое значение имеет кальций для нормального развития и деятельности корневой системы. При недостатке этого элемента задерживается формирование и рост корней, в том числе корневых волосков. Нехватка кальция, прежде всего, отражается на развитии молодых органов, так как не происходит транспорта кальция из старых частей в более молодые.
gH=4-6 подходит для большинства видов в аквариуме.
Углекислый газ необходим растению для построения тканей. Если в воде его недостаток, то при хорошем освещении идет процесс биогенного смягчения воды. За счет превращения растворимого кислого углекислого кальция в нерастворимый углекислый кальций (из-за лишения первого молекулы CO2), который выпадает в осадок в виде белого налета на листьях, стенках, грунта и т. д., и от чего листа становятся хрупкими и ассимиляция функции поверхности листа блокируется слоем выпавшего мела. Рыбы, малюски, гнилостные процессы являются поставщиками CO2. Но для хорошего роста, обычно этого недостаточно, поэтому СО2 надо добавлять во время освещения.
И так вы решили установить растительный аквариум,
выбирайте питательный грунт:
— если позволяют финансы, то можно выбрать продукцию АДА;
— не плохой вариант продукция JBL…;
— хорошо зарекомендовали себя добавлять под слой кварца, гранита, битого кирпича, керамзита — Tetra Initial Stiks, черный гранулированный торф Sera и активированный уголь;
— или просто использовать землю
Устанавливайте освещение:
Ранее я использовал комбинацию ламп ЛБ, ЛД и лампы накаливания, сейчас устанавливаю лампы разных фирм и с разным спектром.
Из удобрений остановился на следующем:
Микро с калием — по рецепту PMDD (без нитрата) на Тенсо-Коктейле
1 стол. ложка Тенсо-Коктейль
2 ст. ложки сульфата калия 1 ст. ложки сульфата магния 0,6 г борной кислоты
до 500 мл — добавить дистиллированной воды
2-3 мл на 100л аквариумной воды в зависимости от количества растений.
и так как железа там меньше, то дополнительно добавляю отдельно хранящийся раствор железа:
пакет (хелат железа 5г) высыпаю в 0,5 л дистиллированной воды и добавляю 7,5 г (3 пакетика) аскорбиновой кислоты. Этого раствора добавляю 10 мл в неделю на 100 л.
Макро:
на 1 л дистиллированной воды нитрат калия ( KNO3 ) 80 г + монофосфат калия ( KH2PO4 ) 7 г.
Этот раствор добавляю 20-30 мл (в зависимости от кол-ва и роста растений) на 100 л в неделю.
После подмены добавляю дополнительно сульфат калия K2SO4 1/2 чайной ложки на 100л.
И раз в неделю за день-два перед подменой добавляю 1 гр трилон Б.
Сначала я использовал только микроэлементы, но макро быстро заканчивались и растения останавливали рост. После появления информации об удобрении PMDD (с добавлением нитрата) я успешно пользовался им. Фосфаты попадают в аквариум с кормом, но их не достаточно для хорошего роста, поэтому стал добавлять и их. Постепенно пришёл к методу описанном выше.
Эти удобрения успешно испытал в своих аквариумах Сергей serega-gold из г.Миасса Не росли его растения
После применения удобрений, через несколько месяцев в его аквариуме растения разрослись, и он делился с другими аквариумистами.
Желаю успехов!
Христенко Юрий.
Источник
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Приложения для Android
Питание растений
Питание растений — процесс поглощения из внешней среды, передвижения, накопления и трансформации питательных веществ, необходимых для жизни растений. В ходе этого процесса происходит обмен веществ между растениями и окружающей средой. Неорганические вещества, находящиеся в почве, атмосфере и вода поступают в растение, и используются для синтеза сложных органических соединений, часть веществ может выводится из растительного организма в окружающую среду.
Зеленые растения под действием солнечного света в процессе фотосинтеза из углекислого газа, воды и простых минеральных солей синтезируют органические вещества, которые в свою очередь обеспечивают пищей человека и животных. В результате этого процесса вся зеленая растительность в дневное время выделяет большое количества кислорода, которым дышат живые организмы. Поэтому жизнь на Земле обусловлена работой высших и низших растений. О масштабе и значимости этого процесса в природе можно судить по следующим данным: зеленые растения ежегодно образуют в пересчете на глюкозу до 400 млрд т органических веществ, из которых 115 млрд т — на суше, связывается до 170 млрд т углекислого газа и разлагается при фотолизе в растениях 130 млрд т воды с выделением 115 млрд т кислорода.
Для синтеза органических веществ растения в мировом масштабе используют до 2 млрд т азота и 6 млрд т зольных элементов. Запасы азота в атмосфере составляют 4·10 15 т, однако они не определяют обеспеченность культур азотом, так как растения используют этот элемент из почвы, а не атмосферы.
Растение через листья получает более 95% углекислого газа и может усваивать путем некорневого питания из водных растворов зольные элементы и азот. Однако основное количество азота, воды и зольных питательных веществ поступает из почвы через корневую систему.
Вода потребляется растением и используется в процессе питания фотолиза и в значительно большем количестве испаряется листьями. Для образовании 1 кг сухой массы урожая культуры испаряют 300-400 кг воды. В неблагоприятных условиях расход воды возрастает в 1,5-2 раза, тогда как в оптимальных условиях расход воды снижается на 15-20%.
Из-за взаимосвязи с погодно-климатическими условиями регулирование и оптимизация процесса питания растений и обмена веществ не всегда возможна. От этих условий зависит и содержание питательных веществ в почве в доступной для растений форме. Мобилизация или иммобилизация отдельных питательных веществ в почве также определяется активностью и направленностью химических, физико-химических и микробиологических процессов, биологическими свойствами самого растения, динамикой поглощения отдельных катионов и анионов в процессе вегетации.
На процессы, определяющие рост и развитие растений, сильное влияние оказывают удобрения. Они изменяют содержание солей в почве, интенсивность и направленность химических, физико-химических и биологических процессов, реакцию и буферность почвы, поглотительную способность.
Типы питания растений
Автотрофный тип питания — самостоятельное обеспечение растением своих потребностей в питательных веществах, посредством поглощения неорганических веществ из почвы и углекислого газа из атмосферы. Характерен для большинства растений. К организмам с автотрофным типом питания относятся также некоторые бактерии, способные фотосинтетически или хемисинтетически усваивать углекислый газ.
Симбиотрофный тип питания — обеспечение растением своих потребностей в питательных веществ за счет других организмов (симбионтов). Симбиоз в ходе эволюционных процессов развился как полезная для растений форма отношений. При симбиотрофном типе питания отмечается взаимное использование продуктов обмена веществ для питания. Границы симбиоза не всегда могут быть точно определены, так как трудно определить пользу или вред, приносимые одним организмом другому.
Микотрофный тип питания — симбиоз высшего растения с грибами. Микориза гриба обеспечивает поступление в высшее растение воды и растворенных в ней минеральных солей и других веществ, грибы используют органические соединения, синтезируемые высшим растением. Значение микоризы грибов заключается в увеличении поглощающей поверхности корней растения за счет мицелия гриба.
Открыты микоризные грибы, способствующие улучшению питание растений фосфором. Дальнейшее изучение этого симбиоза и использование его в практике земледелия может иметь большое значение, так как позволяет сократить применение фосфорных удобрений. Например, в полевом опыте, проведенном в Уэльсе, при известковании и подкормке фосфором урожайность клевера, инокулированного микоризой, по сухому веществу была в 3 раза выше, образование побегов увеличилось в 2 раза, а клубеньков ризобиума — в 5 раз. Аналогичные данные получены в Тропической Африке, Бразилии, Австралии и Испании на почвах, бедных доступным фосфором.
Бактериотрофный тип питания — симбиоз высших растений с бактериями. Наиболее яркий пример — симбиоз клубеньковых бактерий с бобовыми растениями. В условиях интенсификации, химизации и экологизации земледелия возрастает значение способности бобовых растений и микроорганизмов связывать молекулярный азот атмосферы. Ежегодно в результате симбиоза бактерий с бобовыми растениями фиксируется 40-106 т азота.
Условия питания растений
Обеспечение оптимальных условий питания за счет использования удобрений позволяет более экономно расходовать влагу на создание единицы урожая. Коэффициент транспирации при этом может снижаться на 15-20%. С другой стороны, экономическая эффективность удобрений дополнительным урожаем возрастает при условии хорошего водоснабжения растений. Отмечены многочисленные случаи отсутствия положительного эффекта удобрений на кислых и солонцовых почвах.
Для правильной оценки эффективности применения удобрений необходимо правильно оценивать все факторы, лимитирующие урожайность. Например, в северных районах в условиях достаточного увлажнения, большее значение приобретают факторы тепла и обеспеченности почв питательными веществами.
В южных районах, особенно на обыкновенных южных чернозёмах и каштановых почвах, характеризующихся высоким потенциальным плодородием, лимитирующим фактором чаще является недостаток влаги.
Виды питания растений
Воздушное питание растений — углеродное питание растений, осуществляемое за счет ассимиляции углекислого газа атмосферы зелеными листьями в процессе фотосинтеза.
Некорневое питание растений — процесс поступление питательных веществ в растения через надземные органы. Открытие этого процесса послужило развитию применения некорневых подкормок, которые позволяют повысить урожай и его качество.
Корневое питание растений — поглощение из почвы воды и минеральных солей, а также в незначительных количествах некоторых органических веществ.
Согласно исследованиям, деление на корневое и воздушное питание условно, так как одни и те же вещества могут поглощаться как корнями, так и листьями. Так, углекислота поступает в растение через корни в той же мере, что и через листья. Сера поступает в растение через корни в виде сульфатов. Позже благодаря применению радиоизотопа серы была показана способность растений усваивать оксиды серы из воздуха через листья.
Корневое и некорневое питание растений взаимосвязаны. Так, недостаток питательных веществ в почве приводит к задержке образования органических соединений в листьях, что, в свою очередь, тормозит развитие растений.
Питание растений в разные периоды вегетации
Поглощение элементов питания в онтогенезе, то есть в течение вегетации, происходит неравномерно, поэтому система удобрения должна учитывать потребности растений в разные периоды жизненного цикла. Недостаточное обеспечение питания в различные периоды жизни растений приводит к снижению урожайности и ухудшению качества растительной продукции.
Особенно важно обеспечить питательными веществами растения в критический период, когда недостаток питания в это время резко ухудшает рост и развитие. То же относится и к периоду максимального поглощения.
Высокая чувствительность к недостатку и к избытку минерального питания отмечается у растений в начальный период роста.
Таблица. Влияние питания растений фосфором на урожайность ячменя 1
Условия питания | Урожайность, % | |
---|---|---|
общая | зерно | |
Нормальное питание фосфором постоянно | 100 | 100 |
Без фосфора первые 15 дней | 17,4 | 0 |
Без фосфора от 45 до 60 дней | 102 | 104 |
Высокая потребность молодых растений в минеральном питании объясняется высокой интенсивностью синтетических процессов при слаборазвитой корневой системе. Так, у зерновых злаков закладка и дифференциация репродуктивных органов начинается в период развертывания первых трех-четырех листочков. Недостаток азота в этот период приводит к сокращению числа колосков и снижению урожая. Последующее нормальное питание не компенсирует дефицит питательных веществ на начальных этапах развития.
Интенсивность потребления питательных веществ у разных культур меняется в зависимости от периода развития. Например, растения сахарной свеклы в первый месяц потребляют азота, фосфора и калия по 2 кг/га, а во второй — N 96 кг/га, Р2O5 34 кг/га и К2O 133 кг/га.
Таблица. Питание азотом и урожай ячменя, г на сосуд 2
Условия питания | Солома | Зерно |
---|---|---|
Азот на протяжении всего периода вегетации | 26,1 | 6,4 |
Без азота первые 15 дней | 4,5 | 0 |
Без азота от 15 до 30 дней | 19,4 | 4,2 |
Без азота от 30 до 40 дней | 29,1 | 8,7 |
Без азота от 45 до 60 дней | 29,4 | 7,7 |
Без азота после колошения | 18,6 | 3,8 |
Травы и сахарная свекла отличаются длительным периодом потребления питательных веществ. Конопля, наоборот, имеет короткий период интенсивного потребления — 75% от общего количества питательных веществ потребляется от фазы бутонизации до фазы цветения.
Наибольшее количество элементов минерального питания яровые зерновые потребляют в период от выхода в трубку до колошения. В период колошения пшеница потребляет азота, фосфора и калия около 76% от максимального, ячмень — около 67% и овес — 47%.
Таблица. Потребление питательных веществ яровыми зерновыми культурами, % от максимального 3
Фаза роста | Пшеница | Ячмень | Овес | ||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
Колошение | 71 | 68 | 88 | 71 | 56 | 73 | 51 | 36 | 54 |
Цветение | 97 | 100 | 100 | 96 | 74 | 100 | 82 | 71 | 100 |
Полная спелость | 90 | 93 | 67 | 100 | 100 | 64 | 100 | 100 | 83 |
Злаковые культуры наиболее требовательны к азотному питанию в период образования ассимиляционного аппарата и в период дифференциации репродуктивных органов. Сахарная свекла нуждается в достаточном обеспечении калием во время сахаронакопления.
Таблица. Динамика потребления питательных элементов капустой, % от максимального 4
Фаза роста | От начала вегетации | ||
---|---|---|---|
N | P2O5 | K2O | |
Рассада (10.06) | 0,17 | 0,14 | 0,12 |
Формирование кочана (27.07) | 30,5 | 21,8 | 24,2 |
Рыхлый кочан (7.09) | 96,4 | 100 | 96,6 |
Хозяйственная спелость | 100 | 90,5 | 100 |
Лен чувствителен к недостатку азотного питания в период от елочки до бутонизации, к уровню калийного питания — в период от бутонизации до цветения.
Условия питания | Масса растений, % |
---|---|
Полное питание весь период | 100 |
Без азота от «елочки» до бутонизации | 38,3 |
Без азота от бутонизации до уборки | 99,0 |
Условия питания | Число коробочек на одно растение |
---|---|
Полное питание весь период вегетации | 42 |
Без калия первые 22 дня | 43 |
Без калия от бутонизации до уборки | 9 |
Огурец требователен к азотному питанию в период формирования ассимиляционного аппарата, к фосфорному — перед цветением. В период плодоношения огурец предъявляет повышенные требования к обеспечению азотом и калием.
Усиление азотного и частично фосфорного питания в период бутонизации и цветения приводит к увеличению урожая зерновых. Повышенное питание азотом в период образования листовой массы и улучшение фосфорно-калийного питания в дальнейшем повышает урожайность корне- и клубнеплодов.
Потребность большинства культур в азотном питании уменьшается к началу плодообразования, роль фосфора и калия, наоборот, возрастает. В целом, период плодообразования отличается снижением потребления питательных веществ, а процессы жизнедеятельности в растениях к концу вегетации осуществляются преимущественно за счет реутилизации накопленных питательных веществ.
В системе удобрения основное удобрение должно обеспечивать питание растений на протяжении всего вегетационного периода, поэтому до посева вносят все органические и большую часть минеральных удобрений. Для обеспечения растений питательными веществами в начальный период вносят припосевное удобрение.
Количество и качество урожая можно регулировать подкормками в разные периоды вегетации. Подкормки улучшают питание растений в наиболее ответственные периоды или при выявлении дефицита какого-либо элемента питания.
Потребность в питательных веществах изменяется также в течение суток. Суточная периодичность отмечена почти для всех жизненных процессов растений.
В условиях искусственного питания (на питательных средах) имеют значение состав, концентрация питательного раствора, режим его использования в течение вегетации. Например, временным дефицитом питательных веществ во внешней среде в определенные периоды вегетации можно усилить развитие корневой системы, а заменой питательного раствора на воду вызвать временное голодание, стимулировав этим клубнеобразование у картофеля, завязей плодов у томата и добиться таким приемом скороспелости.
Суточная периодичность поглощения питательных веществ проявляется при переменных и постоянных условиях среды и носит характер внутреннего эндогенного ритма. Такая регулируемая суточная периодичность процессов позволяет растениям приспосабливаться к изменяющимся условиям внешней среды. Эндогенные суточные и околосуточные (циркадные) ритмы в постоянных искусственных условиях имеют тенденцию к затуханию, но восстанавливаются при меняющихся условиях. Способность растений менять циркадный ритм позволяет повысить их выживаемость.
Ритмы у растений бывают годовые, сезонные и суточные. Также отмечаются ритмы импульсного характера, с периодами от нескольких секунд до часов. Например, такие ритмы короткой активности отмечены в поглощающей и выделительной деятельности корней.
В условиях искусственного выращивания культур, представляет интерес метод периодического питания, так как позволяет без увеличения расходов повысить продуктивность растений.
Источник