- Каким способ можно выявить рецессивные аллели
- Каким способ можно выявить рецессивные аллели
- Генетические нарушения у человека и методы их выявления
- Методы исследования хромосом
- Мутации в генах и заболевания, к которым они способны приводить
- Как выявляют рецессивные мутации?
- Что делать, если в семье есть наследственное заболевание?
Каким способ можно выявить рецессивные аллели
Подробное решение параграф 1.4.2 по биологии для учащихся 11 класса, авторов Захаров В.Б., Мамонтов С.Г., Сонин Н.И., Захарова Е.Т. Углубленный уровень 2018
Вопросы и задания для повторения.
1. Какие популяционно-генетические закономерности выявил русский биолог С. С. Четвериков?
Большой вклад в популяционную генетику внёс русский учёный С. С. Четвериков. Он обратил внимание на насыщенность природных популяций рецессивными мутациями, а также на колебания частоты генов в популяциях в зависимости от действия факторов внешней среды и обосновал положение о том, что эти два явления – ключ к пониманию процессов эволюции.
2. Какова частота мутирования одного определенного гена в естественных условиях существования особей?
Действительно, мутационный процесс – постоянно действующий источник наследственной изменчивости. Гены мутируют с определённой частотой. Подсчитано, что в среднем одна из 100 тыс. – 1 млн гамет несёт вновь возникшую мутацию в определённом локусе. Поскольку одновременно мутируют многие гены, то 10—15% гамет несут те или иные мутантные аллели. Поэтому природные популяции насыщены самыми разнообразными мутациями. Благодаря комбинативной изменчивости мутации могут широко распространяться в популяциях. Большинство организмов гетерозиготно по многим генам.
3. Как можно объяснить появление в ходе эволюции множества новых генов у более высокоорганизованных групп организмов по сравнению с менее организованными?
Одним из ведущих механизмов, приводящих к появлению новых генов, является удвоение ДНК. В зависимости от размеров удваивающихся участков молекулярные генетики выделяют внутригенные дупликации, удвоение целых генов, участков хромосом и некоторые другие.
Значение таких дупликаций для эволюционных преобразований впервые было отмечено в начале 30-х гг. XX в. известным английским биохимиком Дж. Холдейном (см. 10 класс, гл. 2). Учёный и его коллеги предположили, что после удвоения гена его копии могут по-разному накапливать мутации. Впоследствии оказалось, что дупликации целых генов – не единственный способ возникновения новых генов. К аналогичным результатам приводит и удвоение части гена, удлиняющее исходный вариант и, следовательно, вызывающее появление другого гена и соответствующего ему признака. Примером новообразования генов таким способом может служить так называемое семейство генов гормона роста. Так, в результате дупликаций и мутаций из одного исходного гена возникли гены гормона роста, пролактина, плацентарного лактогена и др.
Анализ геномов организмов, стоящих на различных ступенях эволюционной лестницы, показывает, что количество структурных генов у них отличается лишь в разы. Например, у «модного» в генетических исследованиях объекта – круглого червя С. еlеgаns около 20 тыс. генов, а у человека – 30 тыс.
4. Что является причиной многократного превышения числа признаков организма над количеством его генов?
В то же время число признаков, определяемых этими генами у человека, на несколько порядков выше. По весьма приблизительным подсчётам, 30 тыс. генов представителя нашего вида вызывают развитие более 300 тыс. признаков.
В чём же причина такого многообразия фенотипических проявлений столь небольшого количества генов?
По мнению учёных, таких причин как минимум две.
Во-первых, это изменения регуляторных генов, приводящих к изменению времени и места включения в работу (экспрессии) генов. Активация гена на более ранних этапах онтогенеза вызывает и усиливает плейотропный эффект гена и, следовательно, большее число его проявлений (см. 10 класс, гл. 9) в виде нескольких признаков и свойств.
Во-вторых, у более высокоорганизованных групп живых организмов в большей степени изменяется сам процесс реализации наследственной информации. Вспомните, в 10 классе, говоря о транскрипции, мы рассматривали процесс альтернативного сплайсинга. В результате различного соединения экзонов он даёт разные по последовательности нуклеотидов иРНК, синтезированные на одном и том же гене. Такие иРНК транслируются в неодинаковые белки – разные признаки. При изучении процессов реализации наследственной информации оказалось, что у червя С. elegans альтернативный сплайсинг характерен лишь для 20% генов, в то время как у человека более 80% генома реализуется с участием этого процесса.
Источник
Каким способ можно выявить рецессивные аллели
Подробное решение параграф § 55 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014
1. Что такое естественный отбор?
Ответ. Естественный отбор — процесс, изначально определённый Чарльзом Дарвином как приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. В соответствии с теорией Дарвина и современной синтетической теорией эволюции, основным материалом для естественного отбора служат случайные наследственные изменения — рекомбинация генотипов, мутации и их комбинации.
2. Что такое генотип?
Ответ. Термин «генотип» был введен в науку Иогансоном в 1909 г. Генотип (genotype, от греч. genos — род и typos — отпечаток, форма, образец) — совокупность генов организма, в более широком смысле — совокупность всех наследственных факторов организма, как ядерных, так и неядерных. Сочетание уникальных геномов (наборов), полученных от каждого из родителей, создает генотип, лежащий в основе генетической индивидуальности. Понятия генотип и фенотип — очень важные в биологии. Как сказано выше, совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма (морфологических, анатомических, функциональных и др.) составляет фенотип. На протяжении жизни организма его фенотип может изменяться, однако генотип при этом остается неизменным. Это объясняется тем, что фенотип формируется под влиянием генотипа и условий среды. Слово генотип имеет два смысла. В широком смысле — это совокупность всех генов данного организма. Но применительно к опытам того типа, которые ставил Мендель, словом генотип обозначают сочетание аллелей, которые контролируют данный признак (например, организмы могут иметь генотип AA, Aа или аа).
Таким образом, генотип — это: — характерная для данного индивидуума вся совокупность генетических (геномных) характеристик и характеристика определенных пар аллелей , которые индивидуум имеет в исследуемом районе генома.
Вопросы после § 55
1. Что такое генофонд популяции?
Ответ. Каждая популяция характеризуется определённым генофондом, т. е. совокупным количеством генетического материала, который слагается из генотипов отдельных особей.
Необходимыми предпосылками эволюционного процесса являются возникновение элементарных изменений аппарата наследственности – мутаций, их распространение и закрепление в генофондах популяций организмов. Направленные изменения генофондов популяций под воздействием различных факторов представляют собой элементарные эволюционные изменения.
Как уже отмечалось, природные популяции в разных частях ареала вида обычно более или менее различны. Внутри каждой популяции имеет место свободное скрещивание особей. В результате каждая популяция характеризуется собственным генофондом с присущими только данной популяции соотношениями различных аллелей.
2. Почему большая часть мутаций не проявляется внешне?
Ответ. Природные популяции насыщены самыми разнообразными мутациями. На это обратил внимание русский учёный Сергей Сергеевич Четвериков (1880–1959), который установил, что значительная часть изменчивости генофонда скрыта от глаз, так как подавляющее большинство возникающих мутаций рецессивны и не проявляются внешне. Рецессивные мутации как бы «впитываются видом в гетерозиготном состоянии», ведь большинство организмов гетерозиготно по многим генам. Подобную скрытую изменчивость можно выявить в экспериментах со скрещиванием близкородственных особей. При таком скрещивании некоторые рецессивные аллели, находившиеся в гетерозиготном и потому скрытом состоянии, перейдут в гомозиготное состояние и смогут проявиться. Значительная генетическая изменчивость природных популяций легко обнаруживается и в ходе искусственного отбора. При искусственном отборе из популяции выбирают тех особей, у которых какие-либо ценные в хозяйственном отношении признаки выражены наиболее сильно, и скрещивают этих особей между собой. Искусственный отбор оказывается эффективным почти во всех случаях, когда к нему прибегают. Следовательно, в популяциях имеется генетическая изменчивость буквально по каждому признаку данного организма.
3. В чём кроется способность популяции адаптироваться (приспосабливаться) к новым условиям?
Ответ. Поскольку всякая популяция обычно хорошо приспособлена к своей среде обитания, крупные изменения обычно снижают эту приспособленность, подобно тому как значительные случайные изменения в механизме часов (удаление какой-нибудь пружины или добавление колёсика) ведут к сбою в их работе. В популяциях имеются большие запасы таких аллелей, которые не приносят ей какой-либо пользы в данном месте или в данное время; они сохраняются в популяции в гетерозиготном состоянии, пока в результате изменения условий среды вдруг не окажутся полезными. Как только это случается, их частота под действием отбора начинает возрастать, и в конечном счёте они становятся основным генетическим материалом. Именно в этом кроется способность популяции адаптироваться, т. е. приспосабливаться к новым факторам – изменениям климата, появлению нового хищника или конкурента и даже к загрязнению среды человеком.
Примером подобной адаптации служит эволюция видов насекомых, устойчивых к инсектицидам. События во всех случаях развиваются одинаково: при введении в практику нового инсектицида (яда, действующего на насекомых) для успешной борьбы с насекомым-вредителем бывает достаточно небольшого его количества. С течением времени концентрацию инсектицида приходится повышать, пока, наконец, он не оказывается недейственным. Первое сообщение об устойчивости насекомого к инсектициду появилось в 1947 г. и относилось к устойчивости комнатной мухи к ДДТ. Впоследствии устойчивость к одному или нескольким инсектицидам была обнаружена не менее чем у 225 видов насекомых и других членистоногих. Гены, способные обеспечить устойчивость к инсектицидам, очевидно, имелись в каждой из популяций этих видов; их действие и обеспечило в конечном итоге снижение эффективности ядов, использованных для борьбы с вредителями
4. Каким способом можно выявить рецессивные аллели?
Ответ. Рецессивный аллель (recessive allele, от лат. recessus — отступление) — аллель, фенотип которого не проявляется в гетерозиготах, но проявляется при гомозиготном или гемизиготном генотипе по этому аллелю. Если рецессивные аллели находятся в гомозиготном состоянии, то они проявятся в фенотипе. Если надо узнать, присутствуют ли они в генотипе организма с доминантным фенотипом, то применяют анализирующее скрещивание. Для этого скрещивают проверяемый организм с носителем рецессивного фенотипа. Если в потомстве будут рецессивные особи, значит проверяемый организм — носитель рецессивного гена.
Источник
Генетические нарушения у человека и методы их выявления
Генами называются участки ДНК, в которых закодирована структура всех белков в теле человека или любого другого живого организма. В биологии действует правило: «один ген – один белок», то есть в каждом гене содержится информация только об одном определенном белке.
В 1990 году большая группа ученых из разных стран начала проект под названием «Геном человека». Он завершился в 2003 году и помог установить, что человеческий геном содержит 20–25 тысяч генов. Каждый ген представлен двумя копиями, которые кодируют один и тот же белок, но могут немного различаться. Большинство генов одинаковые у всех людей – различается всего 1%.
ДНК находится в клетке внутри ядра. Она особым образом организована в виде хромосом – эти нитеподобные структуры можно рассмотреть в микроскоп с достаточно большим увеличением. Внутри хромосомы ДНК намотана на белки – гистоны. Когда гены неактивны, они расположены очень компактно, а во время считывания генетического материала молекула ДНК расплетается.
В клетках человека есть структуры, которые называются митохондриями. Они выполняют роль «электростанций» и отвечают за дыхание. Это единственные клеточные органеллы, у которых есть собственная ДНК. И в ней тоже могут возникать нарушения.
Весь набор хромосом в клетке называется кариотипом. В норме у человека он представлен 23 парами хромосом, всего их 46. Выделяют два вида хромосом:
- 22 пары аутосом одинаковы у мужчин и женщин. В каждой паре хромосомы имеют одинаковую длину и содержат одинаковые наборы генов.
- Одна пара половых хромосом. У женщин это две X-хромосомы. Одна из них неактивна и плотно свернута – ее называют тельцем Барра. У мужчин одна половая хромосома представлена X-хромосомой, а вторая – Y-хромосомой, она меньше по размерам.
Методы исследования хромосом
Для исследования кариотипа применяют специальный метод – световую микроскопию дифференциально окрашенных метафазных хромосом культивированных лимфоцитов периферической крови.
Этот анализ применяется для диагностики различных хромосомных заболеваний. Он позволяет выявлять такие нарушения, как:
- Грубые изменения в кариотипе – изменение количества хромосом. Например, при синдроме Дауна в клетках ребенка присутствует лишняя хромосома №21.
- Присутствие в организме клеток с разными кариотипами. Это явление называется мозаицизмом.
- Хромосомные аберрации – нарушение структуры хромосом, внутрихромосомные и межхромосомные перестройки. Сюда относятся делеции (утрата участка хромосомы), дупликации (удвоение участка хромосомы), инверсии (поворот участка хромосомы на 180 градусов), транслокации (перенос участка одной хромосомы в другую).
Однако с помощью исследования кариотипа можно выявить не все генетические нарушения. Оно не способно обнаружить такие изменения, как:
- микроделеции и микродупликации, когда утрачивается или дублируется очень маленький участок хромосомы;
- болезни обмена, вызванные нарушением последовательности «букв» генетического кода в отдельных генах;
- митохондриальные заболевания, связанные с нарушениями в генетическом материале митохондрий;
- низкопроцентный мозаицизм, когда клеток с неправильным кариотипом очень мало;
- мутации в отдельных генах, которые не приводят к изменению внешнего вида хромосом;
- эпигенетические расстройства, при которых структура хромосом и генов не меняется, но изменяется их функция.
Для получения дополнительной информации, не видимой в световой микроскоп, используют хромосомный микроматричный анализ (ХМА). С его помощью можно изучить все клинически значимые участки генома и выявить изменения в количестве и структуре хромосом, а именно микрополомки (микроделеции и микродупликации).
Во время хромосомного микроматричного анализа применяют технологию полногеномной амплификации и гибридизации фрагментов опытной ДНК с олигонуклеотидами, нанесенными на микроматрицу. Если объяснять простыми словами, то сначала ДНК, которую необходимо изучить, копируют, чтобы увеличить ее количество, а затем смешивают ее со специальными ДНК-микрочипами, которые помогают выявлять различные нарушения.
Эта методика позволяет в одном исследовании выявлять делеции и дупликации участков ДНК по всему геному. Разрешающая способность стандартного ХМА от 100 000 пар нуклеотидов – «букв» генетического кода (в отдельных регионах от 10 000 п. н.).
С помощью ХМА можно выявлять:
- изменения числа хромосом;
- дупликации и делеции, в том числе микродупликации и микроделеции;
- отсутствие гетерозиготности – утрату одной из двух копий гена. Это явление имеет важное значение в онкологии, при болезнях импринтинга (когда активность гена зависит от того, от какого из родителей он получен), аутосомно-рецессивных заболеваниях (связанных с рецессивными генами – о них мы поговорим ниже), близкородственных браках;
- однородительские дисомии, когда в геноме ребенка присутствуют две хромосомы от одного родителя.
Однако, как и предыдущий метод, хромосомный микроматричный анализ имеет некоторые ограничения. Он не позволяет выявлять или ограничен в выявлении таких аномалий, как:
- сбалансированные хромосомные аномалии, когда в хромосомах происходят изменения, которые не приводят к добавлению или утрате генетического материала. К ним относятся инверсии (разворот участка хромосомы на 180 градусов), реципрокные транслокации (обмен участками между хромосомами), небольшие инсерции (вставки в хромосомах);
- мозаицизм, если клеток с нарушениями в кариотипе менее 15%;
- CNV (copy number variation) – повторы небольших участков генома;
- точечные мутации – замены отдельных «букв» генетического кода;
- экспансия (увеличение) повторов коротких участков в ДНК;
- аномалии метилирования – присоединения особых метильных групп к определенным участкам ДНК, которые меняют активность генов.
Мутации в генах и заболевания, к которым они способны приводить
Мутации – это изменения, которые происходят в ДНК как случайным образом, так и под действием разных факторов, например химических веществ, ионизирующих излучений. Они могут затрагивать как отдельные «буквы» генетического кода, так и большие участки генома. Мутации происходят постоянно, и это основной двигатель эволюции. Чаще всего они бывают нейтральными, то есть ни на что не влияют, не приносят ни вреда, ни пользы. В редких случаях встречаются полезные мутации – они дают организму некоторые преимущества. Также встречаются вредные мутации – из-за них нарушается работа важных белков, наоборот, происходят достаточно часто. Генетические изменения, которые происходят более чем у 1% людей, называются полиморфизмами – это нормальная, естественная изменчивость ДНК Полиморфизмы ответственны за множество нормальных отличий между людьми, таких как цвет глаз, волос и группа крови.
Все внешние признаки и особенности работы организма, которые человек получает от родителей, передаются с помощью генов. Это важнейшее свойство всех живых организмов называется наследственностью. В зависимости от того, как проявляются гены в тех или иных признаках, их делят на две большие группы.
- Доминантные гены. Выражаясь простым языком, эти гены более «сильные». Если в клетках присутствует хотя бы одна копия такого гена, его признаки проявятся.
- Рецессивные гены «слабее» доминантных. Если у человека одна копия гена доминантная и одна рецессивная, – проявится признак доминантной. А для проявления рецессивного признака нужно две соответствующих копий.
Например, карий цвет глаз у человека является доминантным. Поэтому у кареглазых родителей с высокой вероятностью родится кареглазый ребенок. Если у одного из родителей глаза карие, а у другого голубые, то вероятность рождения кареглазых детей в такой семье тоже высока. У двух голубоглазых родителей, скорее всего, все дети тоже будут голубоглазыми. А вот у кареглазых родителей может родиться ребенок с голубыми глазами, если у обоих есть рецессивные «гены голубоглазости», и они достанутся ребенку. Конечно, это упрощенная схема, потому что за цвет глаз отвечает не один, а несколько генов, но на практике эти законы наследования зачастую работают. Аналогичным образом потомству могут передаваться и наследственные заболевания.
Как выявляют рецессивные мутации?
Для выявления мутаций, которые передаются рецессивно, используют целый ряд исследований.
Секвенирование по Сэнгеру – метод секвенирования (определения последовательности нуклеотидов, буквально – «прочтение» генетического кода) ДНК, также известен как метод обрыва цепи. Анализ используется для подтверждения выявленных мутаций. Это лучший метод для идентификации коротких тандемных повторов и секвенирования отдельных генов. Метод может обрабатывать только относительно короткие последовательности ДНК (до 300–1000 пар оснований) одновременно. Однако самым большим недостатком этого метода является большое количество времени, которое требуется для его проведения.
Если неизвестно, какую нужно выявить мутацию, то используют специальные панели.
Панель исследования — тестирование на наличие определенных мутаций, входящих в перечень конкретной панели исследования. Анализ позволяет выявить одномоментно разные мутации, которые могут приводить к генетическим заболеваниям. Анализ позволяет компоновать мутации в панели по частоте встречаемости (скрининговые панели, направленные на выявление носительства патологической мутации, часто встречаемой в данном регионе или в определенной замкнутой популяции) и по поражаемому органу или системе органов (панель «Патология соединительной ткани»). Но и у этого анализа есть ограничения. Анализ не позволяет выявить хромосомные аберрации, мозаицизм и мутации, не включенные в панель, митохондриальные заболевания, а также эпигенетические нарушения.
Не в каждой семье можно отследить все возможные рецессивные заболевания. Тогда на помощь приходит секвенирование экзома – тест для определения генетических повреждений (мутаций) в ДНК путем исследования в одном тесте практически всех областей генома, кодирующих белки, изменения которых являются причиной наследственных болезней.
Секвенирование следующего поколения-NGS – определение последовательности нуклеотидов в геномной ДНК или в совокупности информационных РНК (транскриптоме) путем амплификации (копирования) множества коротких участков генов. Это разнообразие генных фрагментов в итоге покрывает всю совокупность целевых генов или, при необходимости, весь геном.
Анализ позволяет выявить точечные мутации, вставки, делеции, инверсии и перестановки в экзоме. Анализ не позволяет выявить большие перестройки; мутации с изменением числа копий (CNV); мутации, вовлеченные в трехаллельное наследование; мутации митохондриального генома; эпигенетические эффекты; большие тринуклеотидные повторы; рецессивные мутации, связанные с Х-хромосомой, у женщин при заболеваниях, связанных с неравномерной Х-деактивацией, фенокопии и однородительские дисомии, и гены, имеющие близкие по структуре псевдогены, могут не распознаваться.
Что делать, если в семье есть наследственное заболевание?
Существуют два способа выявить наследственные генетические мутации у эмбриона:
Предимплантационное генетическое тестирование (ПГТ) в цикле ЭКО. Это диагностика генетических заболеваний у эмбриона человека перед имплантацией в слизистую оболочку матки, то есть до начала беременности. Обычно для анализа проводится биопсия одного бластомера (клетки зародыша) у эмбриона на стадии дробления (4–10 бластомеров). Существует несколько видов ПГТ: на хромосомные отклонения, на моногенные заболевания и на структурные хромосомные перестройки. Данные Simon с соавторами (2018) говорят о том, что в случае проведения ЭКО с ПГТ у пациентки 38–40 лет результативность ЭКО составляет 60%. Но при исследовании эмбриона есть ряд ограничений. Так, из-за ограниченного числа клеток можно не определить мозаицизм.
Если нет возможности провести ЭКО с ПГТ, то используют второй вариант – исследование плодного материала во время беременности.
Для забора плодного материала используют инвазивные методы:
- биопсия хориона – когда берут клетки из плаценты;
- амниоцентез – когда берут клетки амниотической жидкости.
Далее эти клетки исследуют при помощи одного или нескольких генетических тестов (которые имеют свои ограничения). Проведение инвазивных методов может быть связано с риском для беременности порядка 1%.
Таким образом, проведя дополнительные исследования, можно значительно снизить риск рождения ребенка с генетическим заболеванием в конкретной семье. Но привести этот риск к нулю на сегодняшний день, к сожалению, невозможно, так как любой генетический тест имеет ряд ограничений, что делает невозможным исключить абсолютно все генетические болезни.
Автор статьи
Пелина Ангелина Георгиевна
Ведёт генетическое обследование доноров Репробанка, осуществляет подбор доноров для пар, имеющих ранее рождённых детей с установленной генетической патологией.
Источник