Какие волны называются когерентными назовите несколько способов их получения

Способы получения когерентных источников света

Когерентные источники света – это источники, которые имеют постоянную во времени разность фаз, согласованное протекание нескольких колебательных или волновых процессов, степень которых различна.

Имеется много способов получения когерентных источников света, но суть их одинакова. С помощью разделения пучка на две части получают два мнимых источника света, дающих когерентные волны.

Интерференция света – сложение двух или нескольких световых волн с одинаковыми периодами, сходящихся в одной точке, в результате которого наблюдается увеличение или уменьшение амплитуда результирующей волны. Для получения устойчивой интерференционной картины необходимо, чтобы складываемые волны были когерентны. Когерентными называют волны с одинаковой частотой (периодом) и постоянной во времени разностью фаз. Чтобы получить когерентные волны необходимо световую волну от одного источника разделить на две или несколько волн. После прохождения различных путей эти волны, имея некоторую разность хода, интерферируют.

Приёмы разделения волны:

· С помощью бипризмы Френеля:

Волна, идущая от источника света, раздваивается из-за преломления света в двух половинах бипризмы. Получаемы волны 1 и 2 как бы исходят от двух мнимых источников S1 и S2 и являются когерентными, поэтому в заштрихованной области наблюдается интерференция.

Свет, проходящий через узкое отверстие S, падает на экран с двумя отверстиями S1 и S2 и делится на две когерентных волны, поэтому в заштрихованной области наблюдается интерференция, а на экране – интерференционная картина.

2. Вывод выражения для расстояния l между мнимыми изображения источника в случае бипризмы.

Бипризма Френеля представляет собой изготовленные из одного куска стекла две симметричные призмы, имеющие общее основание и малый преломляющий угол G≈1°. На расстоянии L1 от бипризмы располагается источник света S. Можно показать, что в этом случае, если преломляющий угол призмы мал и лучи падают на призму под небольшими углами, все лучи отклоняются призмой почти на одинаковый угол ϕ, равный

где n – показатель преломления стекла, из которого изготовлена призма, α – преломляющий угол каждой половинки бипризмы. При этом мнимые изображения S1 и S2 точечного источника света S лежат с ним в одной плоскости. В результате образуются две когерентные волны, исходящие из мнимых источников S1 и S2. Расстояние d между мнимыми источниками равно:

где L1 – расстояние между источником S и бипризмой. При этом, sin ϕ≈ϕ (так как угол ϕ достаточно мал), тогда:

Источник

Какие волны называются когерентными назовите несколько способов их получения

3.2. Методы получения когерентных волн

Для получения когерентных световых волн с помощью обычных (нелазерных) источников применяют метод разделения света от одного источника на две или нескольких систем волн (световых пучков). В каждой из них представлено излучение одних и тех же атомов источника, так что эти волны когерентны между собой и интерферируют при наложении.

Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.

Источником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S 1 и S 2 , параллельные щели S.

Таким образом, щели S 1 и S 2 играют роль когерентных источников. На экране Э (область ВС) наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S 1 и S 2 , являющихся когерентными. Таким образом, на экране Э (область ВС) наблюдается интерференционная картина.

3.3. Оптическая длина пути и разность хода

Пусть две когерентные волны (см. 3.1) создаются одним источником S, но до экрана проходят разные геометрические длины путей l 1 и l 2 в средах с абсолютными показателями преломления n 1 и n 2 соответственно (рис.4).

Тогда фазы этих волн [см. (1) и (2.9)]

w t — j 1 = w t — k 1 l 1 + j 0 , w t — j 2 = w t — k 2 l 1 + j 0

j 2 — j 1 = k 2 l 2 — k 1 l 1 = (12)

где l 1 = l /n 1 , l 2 = l /n 2 -длины волн в средах, показатели преломления которых n 1 и n 2 соответственно, l — длина волны в вакууме.

Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны.

Величину (13)

называют оптической разностью хода интерферирующих волн. С учетом этого разность фаз

j 2 — j 1 = (14)

Источник

Когерентные волны

Когерентные волны

Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебания была постоянной. Источники, удовлетворяющие этому условию, называются когерентными*.

  • От латинского слова cohaereus — взаимосвязанный.

Волны таких источников также называются когерентными.

Когерентность волн бывает временной и пространственной. Источники, у которых разность фаз остается постоянной, называются когерентными. Наиболее простой способ создать когерентные источники – это использовать реальный источник и его изображение. Существуют различные способы создания когерентных источников. Основные схемы наблюдения интерференции в немохроматическом свете используют деление волнового фронта (обычно от точечного источника) или деление амплитуды волны. При этом создаются две когерентных волны, которые интерферируют при небольшой разности хода.

Согласованность волн, которая заключается в том, что разность фаз остается неизменной с течением времени для любой точки пространства называется временной когерентностью.

Согласованность волн, которая заключается в том, что разность фаз остается постоянной в разных точках волновой поверхности, называется пространственной когерентностью.

Реальные источники практически не могут быть когерентными.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Когерентные волны» в других словарях:

когерентные волны — Волны, разность фаз которых не зависит от времени. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] Тематики виды (методы) и технология неразр.… … Справочник технического переводчика

когерентные волны — koherentinės bangos statusas T sritis fizika atitikmenys: angl. coherent waves vok. kohärente Wellen, f rus. когерентные волны, f pranc. ondes cohérentes, f … Fizikos terminų žodynas

когерентные волны — (связанные волны) волны одинаковой частоты, колебания в которых отличаются постоянной разностью фаз, не изменяющейся со временем … Русский индекс к Англо-русскому словарь по музыкальной терминологии

когерентные световые волны — Световые волны, имеющие постоянную разность фаз световых колебаний в течение данного отрезка времени. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

ВОЛНЫ — (1) (см.), распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества; (2) В. де Бройля проявляются при движении любой микрочастицей и отражают одновременное сочетание волновых и корпускулярных свойств… … Большая политехническая энциклопедия

электромагнитные волны — электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. В вакууме скорость распространения электромагнитной волны с≈300 000 км/с (см. Скорость света). В однородных изотропных средах направления… … Энциклопедический словарь

Когерентность — (от латинского cohaerens находящийся в связи) согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются когерентными, если разность их фаз остаётся постоянной… … Большая советская энциклопедия

Интерференция (физич.) — Картина интерференции двух круговых когерентных волн, в зависимости от длины волны и расстояния между источниками Интерференция волн наложение волн, при котором происходит их взаимное усиление в одних точках пространства и ослабление – в других.… … Википедия

Интерференция волн — Это статья об интерференции в физике. См. также Интерференция и Интерференция света Картина интерференции большого количества круговых когерентных волн, в зависимости от длины волны и расстояния между источниками Интерференция волн взаимное … Википедия

Интерференция (физика) — Это статья об интерференции в физике. См. также Интерференция (неоднозначность) и Интерференция света Картина интерференции двух круговых когерентных волн, в зависимости от длины волны и расстояния между источниками Интерференция волн нелинейное… … Википедия

Источник

2.3. Способы получения когерентных волн

Очевидно, что получить когерентные волны от двух независимых источников света практически невозможно. Это связано с тем, что свет атомом излучается в процессе перехода электронов атома с одного энергетического уровня на другой. Момент такого перехода носит вероятностный характер, соответственно, случайна фаза излучаемой атомом электромагнитной волны. Излучение источника складывается из совокупности излучений отдельных атомов и фаза его, естественно, меняется случайным образом. Следовательно, независимые источники излучают световые волны, разность фаз которых меняется хаотично.

Когерентные волны можно получить, если излучение одного источника разделить на два пучка, заставить каждый пучок пройти разные оптические пути, а затем наложить их друг на друга. В этом случае фазы световых волн в каждом пучке меняются хаотично, но синхронно друг с другом, т.е. разность фаз остается постоянной, и пучки будут когерентными. Такое разделение можно осуществить двумя способами — делением волнового фронта и делением амплитуды волны. Способы деления амплитуды волны будут рассмотрены далее, а в данном пункте рассмотрим несколько конкретных интерференционных схем, в которых используется метод деления световой волны по фронту.

Схема Юнга. Пучок света падает на непрозрачный экран с узкой щелью (рис.2.3). Прошедшим светом освещаются две узкие параллельные щели во втором непрозрачном экране. На этих щелях свет испытывает дифракцию, в результате чего за щелями получаются два расходящихся световых пучка. Эти пучки когерентные, т.к. исходят от одного источника. В области их перекрытия АВ наблюдается интерференционная картина.

Бизеркала Френеля. Два плоских соприкасающихся зеркала (рис.1.2) установлены так, что угол между их плоскостями близок к 180 О . Зеркала освещаются светом от источника S (как правило, в качестве источника берется узкая светящаяся щель, ориентированная параллельно линии соединения зеркал). При отражении от зеркал падающий свет разделяется на две когерентные цилиндрические волны, распространяющиеся так, как если бы они исходили из мнимых источников S1 и S2, являющихся изображением источника в каждом из зеркал. На экране, где волны перекрываются, наблюдается интерференционная картина.

Бипризма Френеля. Бипризма Френеля (рис.2.5) состоит из двух призм с небольшими преломляющими углами , склеенных по малым основаниям. Параллельно основаниям призм на оси симметрии системы располагается узкая светящаяся щель . После преломления в каждой из призм лучи отклоняются от своего первоначального пути на угол =(n-1), где n— показатель преломления стекла, из которого изготовлены призмы. После преломления в бипризме падающий от S пучок света разделяется на два, как бы исходящих из мнимых источников S1 и S2, находящихся в точках пересечения продолжений преломленных лучей. На экране в области пересечения преломленных пучков АВ наблюдается интерференционная картина.

Билинза Бийе. а) Тонкая сферическая линза разрезается по диаметру, и ее половинки разводятся на небольшое расстояние. Образовавшийся промежуток между половинками линзы закрывается непрозрачным экраном. Источник света S помещается на оси симметрии системы на двойном фокусном расстоянии от линзы. В результате получают два действительных изображения S1 и S2 точечного источника S (рис.2.5). S1 и S2 являются источниками сферических когерентных волн. В области их перекрытия наблюдается интерференционная картина.

б) Из тонкой линзы вырезается по диаметру узкая полоска, а оставшиеся части склеиваются по срезу. Источник света помещается в фокусе линзы. В результате преломления лучей в половинках линзы получаем два пучка с плоскими фронтами, распространяющимися под малым углом друг к другу. В области перекрытия пучков наблюдается интерференционная картина (см. рис.2.6).

Во всех (кроме последнего) рассмотренных выше способах получения когерентных волн расчет параметров интерференционной картины сводится к уже изученному нами случаю двух когерентных источников (п.2.2). Надо только в формуле (2.14) использовать расстояние между источниками S1 и S2 и расстояние от источников до экрана, найденные с учетом особенностей геометрии каждого конкретного случая.

Источник

Читайте также:  Познавательная осуществляемые действия формируемые способы деятельности
Оцените статью
Разные способы