- Какие существуют способы задания функции перечислите преимущества
- Способы задания функций
- Явный аналитический способ задания функции
- Интервальный способ задания функции
- Параметрический способ задания функции
- Неявный способ задания функции
- Задание функции рядом
- Табличный способ задания функции
- Графический способ задания функции
- Функция. Способы задания функций.
- Способы задания функций.
Какие существуют способы задания функции перечислите преимущества
Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции. Рассмотрим некоторые способы задания функций.
Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.
При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.
Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.
Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.
Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами — наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.
Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.
Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.
Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.
Если зависимость между x и y задана формулой, разрешенной относительно y , т.е. имеет вид y = f(x) , то говорят, что функция от x задана в явном виде.
Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0 , т.е. формула не разрешена относительно y , что говорят, что функция y = f(x) задана неявно.
Функция может быть определена разными формулами на разных участках области своего задания.
Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.
Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.
Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.
Источник
Способы задания функций
Существуют следующие способы задания функции y = f ( x ) :
- Явный аналитический способ по формуле вида y = f ( x ) .
- Интервальный.
- Параметрический: x = x ( t ) , y = y ( t ) .
- Неявный, как решение уравнения F ( x, y ) = 0 .
- В виде ряда, составленного из известных функций.
- Табличный.
- Графический.
Явный аналитический способ задания функции
При явном способе, значение функции определяется по формуле, представляющем собой уравнение y = f ( x ) . В левой части этого уравнения стоит зависимая переменная y , а в правой – выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.
Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.
Интервальный способ задания функции
При интервальном способе задания функции, область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.
Вот несколько примеров интервального способа задания функции:
Параметрический способ задания функции
При параметрическом способе, вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)
Вот примеры параметрического способа задания функции, используя параметр t :
Преимущество параметрического способа заключается в том, что одну и ту же функцию можно задать бесконечным числом способов. Например, функцию можно задать так:
А можно и так:
Такая свобода выбора, в некоторых случаях, позволяет применять этот способ для решения уравнений (см. «Дифференциальные уравнения, не содержащие одну из переменных»). Суть применения заключается в том, что мы подставляем в уравнение вместо переменных x и y две функции и . Затем задаем одну из них по собственному усмотрению, чтобы из получившегося уравнения можно было определить другую.
Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.
Уравнения (1) – это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:
Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n – 1 дополнительных уравнений.
Пример применения нескольких параметров изложен на странице «Дифференциальное уравнение Якоби». Там решение ищется в следующем виде:
(2) .
В результате получается система уравнений. Чтобы ее решить, вводят четвертый параметр t . После решения системы получается три уравнения, связывающие четыре параметра и .
Неявный способ задания функции
При неявном способе, значения функции определяется из решения уравнения .
Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.
Задание функции рядом
Исключительно важным способом задания функции является ее представление в виде ряда, составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.
Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике, поскольку они позволяют свести вычисления к арифметическим операциям.
В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):
.
В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.
Табличный способ задания функции
При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему. После этого определяем соответствующее значение зависимой переменной y .
Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь – значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда
.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.
Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.
Графический способ задания функции
При графическом способе, значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат – зависимой.
Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных расчетах.
Автор: Олег Одинцов . Опубликовано: 18-04-2018
Источник
Функция. Способы задания функций.
Функция является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции: табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.
1. Табличный способ наиболее широко распространен (таблицы логарифмов, квадратных корней), основное его достоинство – возможность получения числового значения функции, недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.
Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х.
2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты – соответствующие значения функции. Часто для наглядности масштабы на осях принимают разными.
Например: для нахождения по графику у, которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5. Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5, однако если нам необходимо найти значение у при х равном 2,76, то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.
Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.
3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.
Функцию можно задать с помощью математической формулы y=x 2 , тогда если х равно 2, то у равно 4, возводим х в квадрат.
4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.
Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у. Поясняем: если х равно 4, то у равно 4, а если х равно 358, то у равен сумме 3 + 5 + 8, т. е 16. Далее аналогично.
5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.
При разложении числа Эйлера задается функцией:
Ее сокращение приведено ниже:
При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда, значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.
Источник
Способы задания функций.
В математике для решения разных задач очень часто используют разные функции. А знаете ли вы как их можно задавать и в каких случаях надо использовать тот или иной вид? Для начала рассмотрим определение:
Функция считается заданной (известной), если для каждого значения аргумента (из числа возможных) можно узнать соответствующее её значение.
Наиболее употребительны три методы:
Далее остановимся более подробно на каждом из них.
Табличный способ — общеизвестен (таблицы логарифмов, квадратных корней и т. д.). Он сразу дает числовое значение функции. В этом его преимущество перед другими способами. Недостатки: таблица трудно обозрима в целом; она часто не содержит всех нужных значений аргумента.
Графический способ состоит в построении линии (графика) в разных системах координат, например в Декартовой – абсциссы (по горизонтали) изображают значения аргумента, а ординаты (по вертикали) — соответствующие значения функции. Часто бывает, что функция быстро стремится вверх или вниз, поэтом тогда удобнее масштабы на осях брать разными.
Преимущества графического способа — легкость обозрения в целом и непрерывность изменения аргумента; недостатки: ограниченная степень точности и утомительность прочитывания значений функции с максимально возможной точностью.
Аналитический способ состоит в задании функции одной или несколькими формулами, например, $y=f(x)$. Если зависимость между х и у выражена уравнением, разрешенным относительно у, то величина у называется явной функцией аргумента х, в противном случае — неявной. Преимущество здесь в том, что всегда можно вычислить точно значение для любого аргумента. Недостатки, что по самой формуле сложно понять общее поведение функции.
Теперь вы знаете основные методы, и можете использовать любой тот, какой будет удобнее для вас при решении конкретной задачи. Вот, например, вы хотите зарабатывать на форекс, и вам надо проанализировать состояние рынка, спрогнозировать будущее тенденции. То для начала вы таблично выводите уже имеющие данные, потом по ним ищите аналитический вид и график, по которому и делаете необходимые выводы.
Источник