Какие способы вычисления определителя вам известны

Определитель матрицы: алгоритм и примеры вычисления определителя матрицы

Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .

|А|, ∆ , det A — символы, которыми обозначают определитель матрицы.

Способ вычисления определителя выбирают в зависимости от порядка матрицы.

Определитель матрицы 2-го порядка вычисляют по формуле:

d e t A = 1 — 2 3 1 = 1 × 1 — 3 × ( — 2 ) = 1 + 6 = 7

Определитель матрицы 3-го порядка: правило треугольника

Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:

  • правило треугольника;
  • правило Саррюса.

Как найти определитель матрицы 3-го порядка по методу треугольника?

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 1 5 — 1

d e t A = 1 3 4 0 2 1 1 5 — 1 = 1 × 2 × ( — 2 ) + 1 × 3 × 1 + 4 × 0 × 5 — 1 × 2 × 4 — 0 × 3 × ( — 1 ) — 5 × 1 × 1 = ( — 2 ) + 3 + 0 — 8 — 0 — 5 = — 12

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 — 2 5 — 1 1 3 0 2 — 2 5 = 1 × 2 × ( — 1 ) + 3 × 1 × ( — 2 ) + 4 × 0 × 5 — 4 × 2 × ( — 2 ) — 1 × 1 × 5 — 3 × 0 × ( — 1 ) = — 2 — 6 + 0 + 16 — 5 — 0 = 3

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение матрицы по элементам строки:

d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n

Разложение матрицы по элементам столбца:

d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0

  • раскладываем по 2-ой строке:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 2 × ( — 1 ) 3 × 1 — 1 3 — 2 5 1 3 1 0 = — 2 × 1 — 1 3 4 5 1 2 1 0 + 1 × 0 — 1 3 — 2 5 1 3 1 0

  • раскладываем по 4-му столбцу:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 3 × ( — 1 ) 5 × 2 1 0 — 2 4 5 3 2 1 + 1 × ( — 1 ) 7 × 0 1 — 1 2 1 0 3 2 1 = — 3 × 2 1 0 — 2 4 5 3 2 1 — 1 × 0 1 — 1 2 1 0 3 2 1

Читайте также:  Запишите два различных способа нахождения площади многоугольника 4 класс

Свойства определителя

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.

Пример 6

А = 1 3 4 0 2 1 0 0 5

d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10

Определитель матрицы, который содержит нулевой столбец, равняется нулю.

Источник

Определитель матрицы.

Определитель матрицы (детерминант матрицы) — это квадратная таблица чисел либо математических символов (Δd).

Определение. Определителем матрицы n×n является число:

где (α1, α2. αn) — перестановка чисел от 1 до n, N (α12. αn) — число инверсий в перестановке, суммирование происходит по всем вероятным перестановкам порядка n.

Определитель матрицы A в основном обозначают как de t(A), |A|, либо ?(A).

Свойства определителя матрицы.

Свойства определителя матрицы — параметры, при помощи которых находится решение всех видов алгебраических матриц.

  1. Определитель единичной матрицы равняется соответственно единице: det (E) = 1.
  2. Определитель матрицы, где две строки (столбца) равны между собой, будет равен нулю.
  3. Определитель матрицы, где две строки (столбца) пропорциональны друг другу также будет равен нулю.
  4. Определитель матрицы, который содержит строку (столбец) с одними нулями, равен нулю.
  5. Определитель матрицы с двумя или более строками (столбцами) линейно зависимыми между собой тоже равен только нулю.
  6. Если произвести транспонирование, значение определителя матрицы от этого не изменится: det (A) = det (A T )
  7. Определитель обратной матрицы: det (A -1 ) = det (A) -1
  8. Определитель матрицы будет неизменен даже если к любой его строке (столбцу) дописать другую строку (столбец), перед этим умноженную на любое число.
  9. Определитель матрицы не будет изменен, если к любой строке (столбцу) дописать линейную комбинацию других строк (столбцов).
  10. При перемене местами двух строк (столбцов) матрицы определитель матрицы получает противоположный знак.
  11. Общий множитель в строке (столбце) легко выносится за знак определителя:
  12. Умножив квадратную матрицуn-того порядка на любое число не равное нулю, то определитель итоговой матрицы будет равен произведению определителя изначально заданной матрицы на это число в степени n: B = k · A => det (B) = k n · det (A), где A матрица n×n, k — число.
  13. При условии, что каждый элемент любой строки определителя равняется сумме 2х слагаемых, исходный определитель равняется сумме 2х определителей, где вместо этой строки подставлены первые и вторые слагаемые соответственно, а остальные строки совпадают с начальным определителем:
  14. Определитель верхней (нижней) треугольной матрицы соответствует произведению его диагональных элементов.
  15. Определитель произведения матриц будет соответствовать произведению определителей этих матриц: det (A·B) = det (A) · det (B).

Найти определитель матрицы.

Чтобы найти определитель матрицы необходимо знать основные свойства матриц и последовательность действий при решении матрицы.

  1. Для матриц порядка n=2 определитель находят при помощи формулы: Δ=a11*a22a12*a21
  2. Для матриц порядка n=3 определитель находят через алгебраические дополнения либо при помощи метода Саррюса.
  3. Матрица с размерностью >3 раскладывается на алгебраические дополнения, для которых находятся свои определители (миноры). К примеру, определитель матрицы 4 порядка вычисляется через разложение по строкам либо столбцам.

Для нахождения определителя матрицы, который содержит в матрице функции, используются стандартные методы. К примеру, найти определитель матрицы третьего порядка:

Воспользуемся разложением по первой строке:

Δ = sin(x) × [cos(x) × 2 – 0 × tg(x)] + 1×[1 × 0-2 × cos(x)] = 2sin(x) cos(x) — 2cos(x) = sin(2x) — 2cos(x)

Вычислить определитель матрицы.

Вычислить определитель матрицы можно несколькими методами, которые будут перечислены ниже.

Читайте также:  Глазные капли офтан катахром способ применения

Самым популярным способом вычисления определителя матрицы является метод подбора алгебраических дополнений. Есть более простая версия этого метода — вычисление определителя при помощи правила Саррюса. Эти методы отличны при вычислении определителя простой небольшой матрицы, а если нужно посчитать матрицу большой размерности, тогда могут применяться такие методы вычисления определителя матрицы:

  • вычисление определителя методом понижения порядка,
  • вычисление определителя методом Гаусса (через приведение матрицы к треугольному виду),
  • вычисление определителя методом декомпозиции.

В Excel для расчета определителя используется функция =МОПРЕД (диапазон ячеек).

Источник

Методы вычисления определителей

В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Задание. Вычислить определитель второго порядка $\left| \begin <11>& <-2>\\ <7>& <5>\end\right|$

Решение. $\left| \begin <11>& <-2>\\ <7>& <5>\end\right|=11 \cdot 5-(-2) \cdot 7=55+14=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Методы вычисления определителей не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Вычислить определитель $\left| \begin <3>& <3>& <-1>\\ <4>& <1>& <3>\\ <1>& <-2>& <-2>\end\right|$ методом треугольников.

Решение. $\left| \begin <3>& <3>& <-1>\\ <4>& <1>& <3>\\ <1>& <-2>& <-2>\end\right|=3 \cdot 1 \cdot(-2)+4 \cdot(-2) \cdot(-1)+$

$$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:

Задание. Вычислить определитель $\left| \begin <3>& <3>& <-1>\\ <4>& <1>& <3>\\ <1>& <-2>& <-2>\end\right|$ с помощью правила Саррюса.

Решение.

$$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель $\left| \begin <1>& <2>& <3>\\ <4>& <5>& <6>\\ <7>& <8>& <9>\end\right|$

Решение. $\left| \begin <1>& <2>& <3>\\ <4>& <5>& <6>\\ <7>& <8>& <9>\end\right| \leftarrow=a_ <11>\cdot A_<11>+a_ <12>\cdot A_<12>+a_ <13>\cdot A_<13>=$

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Задание. Вычислить определитель $\left| \begin <1>& <2>& <3>\\ <4>& <5>& <6>\\ <7>& <8>& <9>\end\right|$

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Читайте также:  Миллион способов как заработать один доллар

Разложение определителя по элементам строки или столбца

Задание. Вычислить определитель $\left| \begin <9>& <8>& <7>& <6>\\ <5>& <4>& <3>& <2>\\ <1>& <0>& <1>& <2>\\ <3>& <4>& <5>& <6>\end\right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

$$=4 \cdot(2 \cdot 8-4 \cdot 4)=0$$

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Задание. Вычислить определитель $\Delta=\left| \begin <-2>& <1>& <3>& <2>\\ <3>& <0>& <-1>& <2>\\ <-5>& <2>& <3>& <0>\\ <4>& <-1>& <2>& <-3>\end\right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_<11>$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получим нули в первом столбце, кроме элемента $a_<11>$ , для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом: к третьей строке прибавляем три вторых, а к четвертой — две вторых строки, получаем:

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под главной диагональю, а для этого к последней строке прибавляем третью:

Ответ. $\Delta=-80$

Теорема Лапласа

Пусть $\Delta$ — определитель $n$-го порядка. Выберем в нем произвольные $k$ строк (или столбцов), причем $k \leq n-1$ . Тогда сумма произведений всех миноров $k$-го порядка, которые содержатся в выбранных $k$ строках (столбцах), на их алгебраические дополнения равна определителю.

Задание. Используя теорему Лапласа, вычислить определитель $\left| \begin <2>& <3>& <0>& <4>& <5>\\ <0>& <1>& <0>& <-1>& <2>\\ <3>& <2>& <1>& <0>& <1>\\ <0>& <4>& <0>& <-5>& <0>\\ <1>& <1>& <2>& <-2>& <1>\end\right|$

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Источник

Оцените статью
Разные способы