Какие способы регистрации излучений не используются

Методы регистрации излучений

Для регистрации ионизирующих излучений существует несколько методов, основанных на ионизационном, тепловом, фотохимическом и другом воздействии, которыми сопровождаются излучения при взаимодействии их с облучаемой средой.

Наиболее широкое распространение получили радиографический ионизационный и сцинтилляционный методы регистрации излучений.

Радиографический метод регистрации излучений основан на фотохимическом действии ионизирующих излучений- Если излучения направить на фотографическую пленку, то они воздействуют на ее эмульсию так же, как и свет. Проходя через эмульсию пленки, они ионизируют молекулы бромистого серебра и образуют в светочувствительном слое пленки фотоэлектроны и электроны отдачи. Фотоэлектроны, взаимодействуя с зернами бромистого серебра, образуют атомы серебра, которые в процессе проявления пленки способствуют усилению скрытого изображения.

После проявления на пленке получаются потемневшие места с плотностью потемнения, пропорциональной интенсивности излучения и времени воздействия излучений на пленку.

Ионизационный метод регистрации излучений основан на регистрации ионов, образуемых излучениями при прохождении их через заранее известное вещество. В качестве такого вещества используют газ, который наполняют в ограниченный замкнутый объем-детектор излучения. В зависимости от конструкций, назначения и режима работы ионизационные газовые детекторы могут быть в виде ионизационных камер, пропорциональных или газоразрядных счетчиков (счетчиков Гейгера-Мюллера).

Ионизационная камера. Принцип действия ее основан на измерении ионизации в газе, т. е. на способности газов изменять электропроводность под действием ионизирующих излучений. В зависимости от формы электродов ионизационные камеры подразделяются на цилиндрические, плоские и сферические.

Камера (черт. № 172) состоит из цилиндрического корпуса, внутри которого по оси расположен собирающий электрод (анод), тщательно изолированный от стенок корпуса. Наружным электродом камеры (катодом) служит корпус камеры, защищенный экраном. При действии излучений в камере возникают разноименные ионы, которые при отсутствии разности потенциалов находятся в беспорядочном движении. Если же между электродами создать разность потенциалов, ионы под действием электрического поля примут направленное движение, и во внешнем кольце камеры возникает ионизационный ток, величина которого пропорциональна числу ионов, создаваемых излучением, а следовательно, и пропорциональна интенсивности излучения.

Ионизационные камеры работают при небольших напряжениях 100-200 в. Однако в виду низкой эффективности регистрации у-из-лучений и малой величины получаемого сигнала используют пропорциональные, газоразрядные и сцинтилляционные счетчики.

К пропорциональным счетчикам относятся ионизационные камеры, работающие в режиме газового усиления. Газовое усиление получается в том случае, если на электродах ионизационной камеры повысить напряжение до 500 в. В этом случае ионы и электроны, создаваемые ионизирующими излучениями, ускоряясь в электрическом поле камеры, приобретают большую кинетическую энергию и создают на своем пути все новые и новые ионы, напоминая лавинообразный процесс. Коэффициент газового усиления может колебаться от 10 до 106.

К газоразрядным счетчикам (Гейгера- Мюллера) относятся пропорциональные счетчики, работающие в режиме газового разряда. В пропорциональных счетчиках газовый разряд не охватывает весь объем газа, а развивается только в части объема газа. Если же на электродах пропорционального счетчика увеличить напряжение до 1200-1500 в, то процесс газового усиления приводит к разряду по всему объему счетчика и импульс на выходе счетчика может быть зарегистрирован без усиления.

Газоразрядный счетчик представляет собой стеклянный или металлический баллон, заполненный аргоном или смесью двухатомных и многоатомных газов при низком давлении (черт. № 173). Анодом в счетчике является тонкая вольфрамовая нить, натянутая вдоль оси баллона счетчика. В качестве катода используется алюминиевый медный или стальной цилиндрический баллон (корпус) счетчика. У счетчиков со стеклянным баллоном внутренняя сторона баллона покрывается проводящим слоем меди или вольфрама или вставляется тонкий металлический цилиндр. Подготовка счетчика к работе заключается в том, что к его электродам прикладывается разность потенциалов такой величины, которая обеспечивала бы создание электрического поля, необходимого для поддержания процесса ионизации газа. В результате попадания у-лучей из катода счетчика выбивается электрон, который под воздействием электрического поля приобретает ускорение и, сталкиваясь с частицами газа, вызывает его ионизацию. В счетчике возникает разряд. Импульс напряжения при прохождении тока разряда регистрируется.

При дальнейшем повышении разности потенциалов на электродах счетчика ионизация газа в объеме счетчика значительно повышается, так как все выбитые электроны из катода ионизируют весь объем газа в счетчике. В этом случае импульсы тока при работе счетчика будут максимальными, а область работы будет называться областью плато счетчика.

Газоразрядные счетчики могут классифицироваться по назначению, конструкции, способу регистрации и по виду газонаполнения.

Сцинтилляционные методы регистрации излучений основаны на явлении люминесценции, т. е. на свойстве некоторых веществ преобразовывать энергию ионизационных излучений в видимый свет.

Сцинтилляционный счетчик состоит: из сцинтиллятора (кристалл какого-либо люминофора), в котором кинетическая энергия излучений превращается в световые кванты различной интенсивности, и фотоэлектронного умножителя (ФЭУ), преобразующего световые вспышки в электрические импульсы, которые затем усиливаются в несколько миллионов раз.

Читайте также:  Способы фиксации гайки от откручивания

Источник

Регистрация излучения

Для регистрации излучения применяют различные способы.

1. Визуальная регистрация в видимой области спектра – наблюдение спектра глазом человека с помощью окуляра. Человеческий глаз является простейшим (но субъективным) приемником излучения, он способен воспринимать даже слабые потоки излучения видимого диапазона (400-750 нм). Визуальная регистрация излучения используется, как правило, только при экспрессном качественном анализе.

2. Фотографическая регистрация спектра излучения на фотопластинке или фотопленке. На фотопластинке после ее проявления фиксируется не только спектр излучения в ультрафиолетовом и видимом диапазонах, но и степень почернения линий, которая является мерой попавшего на фотоэмульсию излучения. Чувствительность фотоэмульсии практически одинакова от 250 нм до 510 нм. Для увеличения чувствительности фотоэмульсии в нее добавляют различные красители, обеспечивая высокую чувствительность к определенным интервалам длин волн от 200 до 1000 нм. Достоинством фотографической регистрации спектра является ее документальность. Правильность выполнения измерений можно проверить спустя длительное время. Фотоэмульсия позволяет регистрировать широкий интервал длин волн испускаемого излучения и, кроме того, обладает коммулятивным свойством, т.е. она способна суммировать во времени количество излучения, что дает возможность регистрировать очень слабые потоки, увеличивая экспозицию (время воздействия излучения). К недостаткам фотографической регистрации следует отнести длительность ее процедуры, а также изменение параметров фотоэмульсии при длительном хранении, особенно для эмульсий, сенсибилизированных красителями.

3. Фотоэлектрическая регистрация излучения с помощью фотоэлемента или фотоэлектронного умножителя. Фотоэлемент или фотоэлектронный умножитель (ФЭУ) преобразует энергию излучения в электрическую с последующей регистрацией фототока. ФЭУ отличается от фотоэлемента тем, что образующееся в нем общее число электронов значительно больше, чем в фотоэлементе, поэтому чувствительность ФЭУ выше, чем фотоэлемента. К достоинствам фотоэлектрической регистрации излучения следует отнести большой диапазон линейности преобразованного сигнала излучения, оперативность получения аналитической информации и высокая чувствительность регистрации излучения.

Принцип действия спектральных приборов в АЭСА основан на пространственном разложении параллельных потоков излучения в совокупность монохроматических составляющих (т.е. в спектр) с помощью диспергирующих элементов – призм или дифракционных решеток. При фотоэлектрических методах регистрации излучения используют спектрометры, квантометры и пламенные фотометры, а при фотографических способах регистрации применяют спектрографы в сочетании с микрофотометрами. Блок-схема спектрального прибора в АЭСА показана на рис. 2.2.

Рисунок 2.2 – Блок-схема однолучевого эмиссионного спектрометра: 1 – источник излучения (атомизатор); 2 – диспергирующее устройство (монохроматор); 3 – фотоприемник монохроматического излучения; 4 – электроника приемника; 5 – регистрирующее устройство (индикатор выходного сигнала)

Способность спектрального прибора разделять в пространстве излучение различных длин волн характеризуют линейной дисперсией D=dl/dl, где l – расстояние между двумя близлежащими линиями в спектре в мм на 1 нм длины волны l. Более информативной является обратная дисперсия D –1 =dl /dl (число нм на 1 мм). Чем меньше D –1 , тем выше разрешающая способность спектрального прибора.

Источник

1. Способы индикации и регистрации ионизирующих излучений.

Основные методы регистрации ионизирующих излучений:

Прибор для регистрации ионизирующих излучений состо­ит из чувствительного элемента — детектора (датчика) и из­мерительной аппаратуры. В детектор входит вещество, с ко­торым взаимодействуют частицы, и преобразователь эффектов взаимодействия в регистрируемые величины (импульсы, ток, химический осадок и т. д.), которые фиксируются измери­тельной аппаратурой.

К основным и наиболее часто применяемым методам ре­гистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические.

Ионизационный метод основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возни­кающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам. В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др.

Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя В настоящее время известно очень много различных сцинтилляторов – жидких, твердых, газообразных и в виде порошков различной плотности. Это позволяет подобрать не­обходимый детектор для наиболее эффективной регистрации любого ионизирующего излучения в широком диапазоне энер­гий.

Химические методы основаны на том, что часть поглощен­ной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излуче­ния, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изме­няется электрический потенциал и окраска раствора, что мож­но легко определить соответствующими способами.

Читайте также:  Способы изменения себя стиля

Фотографические методы основаны на способности излу­чения разлагать галогениды серебра AgCl или AgBr, входя­щие в состав чувствительных фотоэмульсий, до металлическо­го серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения. В заключение отметим, что большое разнообразие методов регистрации и детекторов связано с причинами различного характера взаимодействия излучения с веществом и различ­ным пробегом.

2. Устройство счетчика Гейгера и принципы работы современных дозиметрических приборов.

Изобретенный еще в 1908 г. немецким физиком Гансом Вильгельмом Гейгером прибор, способный определить ионизирующее излучение, широко используется и в наши дни. Причиной тому является высокая чувствительность устройства, его возможность регистрировать самые различные излучения. Простота эксплуатации и дешевизна позволяют купить счетчик Гейгера любому человеку, решившему самостоятельно измерить уровень радиации в любое время и в любом месте.

По своей конструкции счетчик Гейгера довольно прост. В герметизированный баллон с двумя электродами закачивается газовая смесь, состоящая из неона и аргона, которая легко ионизируется. На электроды подается высокое напряжение (порядка 400В), которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц. Таков в общих чертах принцип работы счетчика Гейгера.

Источник

2.3. Методы регистрации ионизирующих излучений

В настоящее время существует достаточно много методов регистрации ионизирующих излучений. Выбор того или иного метода производится с учетом вида излучения и той инфор­мации, которую хотят получать: простое обнаружение излу­чения, измерение энергии частиц, определение активности и т. д. В соответствии с поставленными задачами выбирают тип измерительных приборов. Для измерения активности и плотности потоков ионизирующих излучений используют ра­диометры, для определения дозы излучений — дозиметры, для нахождения распределения излучения по определенным параметрам (энергии, заряду, массе) — спектрометры.

Прибор для регистрации ионизирующих излучений состо­ит из чувствительного элемента — детектора (датчика) и из­мерительной аппаратуры. В детектор входит вещество, с ко­торым взаимодействуют частицы, и преобразователь эффектов взаимодействия в регистрируемые величины (импульсы, ток, химический осадок и т. д.), которые фиксируются измери­тельной аппаратурой.

К основным и наиболее часто применяемым методам ре­гистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические.

Ионизационный метод основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возни­кающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам.

В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Эти детекторы, кроме полупроводниковых, представляют собой наполненные газом баллоны с двумя вмонтированными электродами. К электро­дам подведено напряжение постоянного тока. Детектор вклю­чается в электрическую цепь. При прохождении ионизирую­щей частицы через газовую среду образуются ионы, которые собираются на электродах. Положительные ионы движутся к катоду, отрицательные — к аноду. В электрической цепи образуется ионизационный ток, который регистрируется измерителем тока. По значению этого тока можно судить об интенсивности излу­чения или отсчитывать число зарегистрированных частиц. Протекание тока наблюдается до тех пор, пока на газ дей­ствует излучение. В противном случае ток в цепи не проте­кает, так как газ является изолятором.

Взаимодействуя с веществом, ядерное излучение наряду с ионизацией производит возбуждение атомов и молекул. Через некоторое время (в зависимости от вещества) возбуж­денные атомы и молекулы переходят в невозбужденное со­стояние с выделением энергии во внешнюю среду. У некото­рых веществ (сернистый цинк, йодистый натрий, антрацен, стильбен, нафталин и др.) такой переход сопровождается испусканием энергии возбуждения в виде квантов видимого инфракрасного и ультрафиолетового света. Внешне это про­является в виде вспышек света — сцинтилляций, которые можно зарегистрировать с помощью соответствующих прибо­ров. На регистрации сцинтилляций, возникающих в определенных веществах при облучении их ионизирующими излу­чениями, и основаны оптические методы.

Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя

Читайте также:  Самый простой способ дренажа

В настоящее время известно очень много различных сцинтилляторов – жидких, твердых, газообразных и в виде порошков различной плотности. Это позволяет подобрать не­обходимый детектор для наиболее эффективной регистрации любого ионизирующего излучения в широком диапазоне энер­гий.

Химические методыоснованы на том, что часть поглощен­ной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излуче­ния, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствораFeSO4ионы двухвалентного железаFe 2+ превращаются в ионы трехвалентного железаFe 3+ . Одновременно при этом изме­няется электрический потенциал и окраска раствора, что мож­но легко определить соответствующими способами.

Отметим, что при использовании химических методов сле­дует подбирать в качестве детекторов такие вещества, хими­ческие изменения в которых пропорциональны дозе или ин­тенсивности ионизирующего излучения

Фотографические методыоснованы на способности излу­чения разлагать галогениды серебраAgClилиAgBr, входя­щие в состав чувствительных фотоэмульсий, до металлическо­го серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения.

В заключение отметим, что большое разнообразие методов регистрации и детекторов связано с причинами различного характера взаимодействия излучения с веществом и различ­ным пробегом. Поэтому невозможно сконструировать универ­сальный детектор, который одинаково хорошо регистрировал бы гамма-кванты, альфа- и бета-частицы. Легче всего заре­гистрировать проникающее гамма-излучение. Для этого хо­роши счетчики Гейгера—Мюллера, но более эффектны сцинтилляционные детекторы с кристаллическими сцинтилляторами большой плотности.

Для регистрации бета-излучения применяют жидкие или пластмассовые сцинтилляторы или ионизационные детекторы с очень тонкими стенками. Альфа-излучение из-за малого пробега в веществе регистрировать очень тяжело. В этом случае чаще используют ионизационные методы, но детекторы особых конструкций — открытые газовые или специальные полупроводниковые детекторы.

При регистрации ионизирующих излучений необходимо помнить о требованиях к измеряемым образцам. Особых тре­бований не существует в случае гамма-излучающих образцов. В образцах, которые испускают бета-частицы, регистрация будет происходить только с верхнего тонкого слоя; все осталь­ное бета-излучение поглощается в самом образце, не достигая детектора. Поэтому бета-излучающие образцы должны быть или очень тонкие или бесконечно толстые. Радиометрия аль­фа-радионуклидов возможна только с очень тонкой пленки, В этом случае перед измерением необходимо провести радио­химическую* обработку образца; его предварительно сжигают, растворяют, выделяют альфа-излучающий радионуклид, ко­торый осаждают на подложку тонким слоем.

Также отметим, что активность определяют, регистрируя радиоактивное излучение, которое сопровождает распад. Но так как для каждого вида излучения необходим отдельный детектор, активность можно определить только в том случае, когда известен состав радионуклидов в образце и число соот­ветствующих частиц или квантов, которые излучаются при одном акте распада. Например, цезий-137, который распа­дается, излучая бета-частицу (электрон) и гамма-квант, мож­но регистрировать как бета-радиометром (с поправкой на эффективность к гамма-излучению), так и гамма-радиомет­ром. При радиометрии стронция-90 необходимо помнить, что данный радионуклид излучает только бета-частицы, причем при распаде образуется иттрий-90, который также испускает бета-частицы, поэтому в образце всегда присутствуют два этих радиоизотопа.

Устройства, предназначенные для преобразования энергии ионизирующих излучений в другие виды энергии, удобные для индикации, последующей регистрации и измерения, называются детекторами ионизирующего излучения(от латинского слова «detector» – тот, кто раскрывает, обнаруживает), но детекторы, как правило, это лишь часть комплекса аппаратуры, предназначенной для регистрации излучений. Эффект, создаваемый излучением в детекторе, должен быть преобразован в электрический ток, который может привести в действие электрическое регистрирующее измерительное устройство.

Устройства, предназначенные для регистрации действия ионизирующего излучения на детектор, называются регистраторами. Комплекты устройств – детектор и регистратор – называются радиометрами.Радиометры– приборы, предназначенные для получения информации об активности нуклидов, плотности потока и потоке ионизирующих частиц или фотонов. Разновидность радиометров представляют собой дозиметры, отградуированные в единицах дозы или мощности излучения.Дозиметры – приборы, предназначенные для получения информации об экспозиционной дозе и мощности экспозиционной дозы или (и) об энергии, переносимой ионизирующим излучением или переданной им объекту, находящемуся в поле его действия.

Существует электрофизическая аппаратура, которая позволяет расшифровать в деталях свойства излучения, проходящего через детектор. Приборы, предназначенные для анализа свойств ионизирующих излучений (радионуклидный состав, энергия, вид излучения, др.), называются анализаторами. В настоящее время различные типы анализаторов принято называть спектрометрами. Спектрометры – приборы, предназначенные для получения информации о спектре распределения ионизирующего излучения по одному или более параметрам, например, по энергии квантов или частиц в потоке излучения.

Иногда регистрация излучения сводится к регистрации следов прохождения отдельных ионизирующих частиц через вещество. По длине следа обычно определяют энергию зарегистрированных частиц, а по виду следа – вид частиц. Такие детекторы принято называть следовыми камерами, а также это могут быть толстослойные фотоэмульсии.

Источник

Оцените статью
Разные способы