Какие способы подключений лампочек

Как лучше подключить лампочки последовательно или параллельно

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель. Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например. Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.

При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.

Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:

  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Законы смешанного соединения

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Читайте также:  Лямблия по способу питания

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения. При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Источник

Последовательное и параллельное соединение лампочек — схемы применения в быту.

Как известно, в быту широко применяется параллельное соединение ламп. Однако последовательная схема также может быть применена и полезна.

Разберем все нюансы обеих схем, ошибки, которые можно допустить при сборке, и приведем примеры их практической реализации в домашних условиях.

Последовательная схема подключения

Сначала рассмотрим простейшую сборку из двух последовательно соединенных ламп накаливания.

  • две лампы вкручены в патроны
  • два провода питания выходят из патронов

Что нужно для их последовательного соединения? Здесь нет ничего сложного.

Просто возьмите один конец провода от каждой лампы и скрутите их вместе.

На два оставшихся конца необходимо подать напряжение 220 Вольт (фазное и нулевое).

Как будет работать такая схема? Когда фаза подается на провод, она проходит через нить накала одной лампы, через скрутку и падает на вторую лампу. И тогда он встречает ноль.

Читайте также:  Как нарисовать кошку самым легким способом

Почему такое простое подключение практически не используется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут сжигать меньше половины тепла.

В этом случае напряжение будет равномерно распределено по ним. Например, если это обычные 100-ваттные лампочки с рабочим напряжением 220 вольт, каждая из них будет иметь более-менее 110 вольт.

В результате будет светиться менее половины их первоначальной мощности.

Проще говоря, если вы соедините две лампы по 100 Вт параллельно, вы получите лампу мощностью 200 Вт. А если та же схема будет собрана последовательно, общая мощность лампы будет намного меньше, чем мощность одной лампочки.
Вот результат измерения силы тока такой сборки при эффективном напряжении питания 240 В.

По формуле расчета находим, что две лампочки светят с мощностью, равной всему: P = I * U = 69,6 Вт

При этом падение яркости будет равномерным только в том случае, если у вас одинаковые электрические лампочки.

Если они различаются, допустим, одна из них — 60 Вт, а другая — 40 Вт, напряжение на них будет распределяться по-разному.

Что это дает нам в практическом смысле при реализации этих схем?

Какая лампочка будет светить ярче и почему

Лампа, у которой нить накала имеет большее сопротивление, будет гореть лучше и ярче.

Возьмем, к примеру, лампочки, которые имеют кардинально разную мощность — 25Вт и 200Вт, и соединим их последовательно.

Какая из них загорится почти по максимуму? Тот, у которого P = 25Вт.

Удельное сопротивление вольфрамовой нити накала намного выше, чем у нити 200, и поэтому падение напряжения на ней сопоставимо с напряжением сети. При последовательном подключении ток будет одинаковым в любой части цепи.

В то же время величина силы тока, способная воспламенить один 25 Вт, никоим образом не способна «поджечь» до двухсот. Проще говоря, источник света с лампой мощностью 200 Вт и более будет восприниматься по сравнению с 25 Вт как обычный отрезок провода, по которому течет ток.

Вы можете увеличить количество ламп и добавить в схему еще одну. Это проделано еще раз, все просто.

Скрутите два конца шнура питания третьей лампы с любым концом первых двух. А в остальном он снова запитывает 220В.

Как в этом случае будет сиять этот венок? Падение напряжения будет еще больше, а значит, лампочки не только загорятся неохотно, но и вообще еле перегорят.

Недостатки схемы

Помимо значительного падения напряжения, вторым отрицательным моментом такой схемы является ее ненадежность.

Если перегорит только одна лампочка в этой цепи, все остальные сразу же погаснут.

Также следует отметить, что такая последовательная схема хорошо подойдет для обычных ламп накаливания. На некоторых других типах, в том числе на светодиодных, каких-либо эффектов ожидать не стоит.

Они могут иметь в своей конструкции электронную схему, требующую питания порядка 220В. Конечно, они могут работать от небольших значений 150–160 В, но 90 В или меньше им будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при установке освещения в квартире могут ошибиться случайно, что связано именно с последовательным подключением источников света.

В результате у вас будет следующий эффект. Когда вы включаете выключатель света, в комнате загорается один свет, а при его выключении — другой.

В этом случае невозможно будет гарантировать, что оба выключатся одновременно. Как это возможно?

Ошибка заключается в том, что электрик просто перепутал точку подключения одного из проводов выключателя и воткнул его в зазор между двумя лампами разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из него, когда напряжение включено, на второй источник света через одиночные ключевые контакты подается напряжение 220 В, и он загорается, как и ожидалось.

Читайте также:  Способы стерилизации химической посуды

В этом случае первый источник остается без питания, так как с обеих сторон он взял «одно и то же имя».

А при разрыве цепи здесь уже образуется такая же последовательная цепь и загорается лампа меньшей мощности.

В то время как более крупный, он практически отключится. Все как описано выше.

Применение в быту

Где можно в повседневной жизни применить такую, казалось бы, непрактичную схему?

Самое известное использование таких конструкций — это елочные венки.

Также можно сделать последовательное освещение в длинном пешеходном коридоре и получить освещение в стиле лофт без особых затрат.

Всегда ли горят лампочки в подъезде или в доме из-за высокого напряжения? Самое дешевое решение — последовательно включить еще один.

Вместо 60Вт включите две сотки и используйте их практически «вечно». За счет низкого напряжения 110 В вероятность их выхода из строя снижается в сотни раз.

Еще одно оригинальное приложение, которое я пока не советую использовать, но отдельные электрики прибегают к нему в безвыходных ситуациях. Это так называемая фазировка трехфазной цепи.

Как выполнить фазировку вводов лампочками накаливания

Допустим, необходимо подключить параллельно два трехфазных входа (380В) от одного источника питания. У вас нет под рукой вольтметра, мультиметра или тестера. Что делать?

Ведь если смешать фазы, можно легко создать межфазное короткое замыкание! И здесь тоже поможет последовательная сборка сразу двух лампочек.

Соберите их по самой первой приведенной схеме и подключите один конец шнура питания ко входу №1. 1, другим концом поочередно касается проводов входа n. 2.

У одноименных фаз лампы не включаются (например, вход fA n. 1 — вход fA n. 2).

А с несколькими (вход fA № 1 — вход PV № 2) — они загораются.

Такой эксперимент только с одной лампой вы никогда не добьетесь успеха, так как она мгновенно взорвется от напряжения выше 380В для нее. А при последовательной сборке с двумя продуктами одинаковой мощности будет подаваться напряжение в пределах нормального диапазона.
Но самое лучшее и практичное применение — использовать эту схему не для освещения, а для обогрева. То есть ваши источники света в первую очередь будут работать не как лампы, а как обогреватели.

О том, как сделать такой простой и незамысловатый инфракрасный обогреватель, читайте в статье по ссылке ниже.

Нечто подобное часто используется в инкубаторах.

Схема параллельного подключения

Теперь посмотрим на схему параллельного подключения.

При параллельном подключении концы силовых кабелей двух лампочек просто скручиваются между собой. Кроме того, они питаются напряжением 220В.

Таким образом можно подключить любое количество устройств. Самое главное, чтобы сечение силовых проводов было рассчитано на такую ​​нагрузку.

В этом случае для вас все будет сиять и гореть именно с той яркостью, на которую изначально были рассчитаны лампы.

На практике, конечно, все нити не скручиваются в одну кучу, а действуют немного по-разному. Заводят общий длинный кабель и уже к нему в виде отводов подключаются отдельные лампочки.

Пи эта схема может быть как петлевой, так и радиусной. Но оба параллельны.

Такая схема применяется везде: в многотрековых люстрах, уличных светильниках, декоративных светильниках для дома и т.д.

А если перегорит одна лампочка, остальные продолжат гореть как ни в чем не бывало.

На них одновременно подается напряжение, которое всегда составляет 220 В.

Однако при установке освещения дома при параллельном подключении не забывайте о последовательном.

Как уже говорилось выше, он также имеет свои преимущества в определенных ситуациях и может очень помочь во многих задачах (декоративное освещение, лампы обогрева, «вечная» лампочка и т.д.).

Источник

Оцените статью
Разные способы