Какие способы питания вам известны фотосинтез
Подробное решение параграф § 8 по биологии для учащихся 9 класса, авторов Пасечник В.В., Каменский А.А., Швецов Г.Г. 2014
- Гдз рабочая тетрадь по Биологии за 9 класс можно найти тут
1. Какие способы питания вам известны?
Существует 2 способа питания: автотрофный (организмы способны сами синтезировать органические вещества из неорганических) и гетеротрофный (организмы используют в качестве источника питания органические вещества, произведенные другим организмами).
2. Что служит источником энергии для синтеза АТФ в клетках автотрофов?
Источником энергии служит солнечный свет, под влиянием которого происходит процесс фотосинтеза.
3. Что такое фотосинтез?
Фотосинтез – процесс синтеза органических веществ из неорганических за счет энергии света.
4. Откуда берётся кислород, образующийся в процессе фотосинтеза?
Фотосинтез делится на две стадии: световая и темновая. Во время световой стадии происходит фотолиз — это процесс распада молекул воды под действием энергии света, образованный в результате фотолиза кислород выделяется в атмосферу.
— Объясните значение каждой фазы фотосинтеза.
Во время световой фазы, под действием энергии свет, протекает фотолиз воды (распад молекул воды на кислород, который выделяется в атмосферу, и на ионы водорода, которые используются в темновой фазе) и образуется молекула АТФ. Темновая стадия может осуществляться без непосредственного освещения и протекает в хлоропластах. В результате целого ряда последовательных биохимических превращений из углекислого газа и водорода образуются органические вещества — глюкоза.
— Докажите, что фотосинтез играет в природе космическую роль.
Фотосинтез является одним из самых важных процессов на Земле. Он обусловливает природные круговороты углерода, кислорода и других элементов, обеспечивает основу жизни на нашей планете. Фотосинтез является единственным источником атмосферного кислорода.
— Каковы особенности питания клеток зелёных растений, не способных к фотосинтезу?
Некоторые клетки растений не способны к фотосинтезу, так как не содержат хлоропластов и выполняют другую функцию у растений, например клетки корня. Такие клетки получают готовые органические вещества от клеток способных к фотосинтезу.
Источник
Фотосинтез
Типы питания
По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.
Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.
Фотосинтез
Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.
Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.
Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.
В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»
Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.
Светозависимая фаза (световая)
Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.
Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):
Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).
Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.
При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:
Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД + превращается в восстановленную — НАДФ∗H2.
Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:
- Свободный кислород O2 — в результате фотолиза воды
- АТФ — универсальный источник энергии
- НАДФ∗H2 — форма запасания атомов водорода
Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.
Светонезависимая (темновая) фаза
Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.
При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.
Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.
Значение фотосинтеза
Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.
В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.
Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:
- Синтезируют органические вещества, являющиеся пищей для всего живого на планете
- Преобразуют энергию света в энергию химических связей, создают органическую массу
- Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
- Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Хемосинтез (греч. chemeia – химия + synthesis — синтез)
Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).
Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.
При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.
Помимо нитрифицирующих бактерий, встречаются:
- Серобактерии — окисляют H2S —> S 0 —> (S +4 O3) 2- —> (S +6 O4) 2-
- Железобактерии — окисляют Fe +2 —>Fe +3
- Водородные бактерии — окисляют H2 —> H +1 2O
- Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза
Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.
Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений.
Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Частная школа. 9 класс
Конспекты, контрольные, тесты
§ 8. ОБМЕН ВЕЩЕСТВ (Пасечник)
Биология 9 класс. Конспекты по учебнику. Метаболизм. Фотосинтез. Фотолиз. § 8. ОБМЕН ВЕЩЕСТВ (Пасечник). Электронная версия. Цитаты использованы в учебных целях.
§ 8. ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЯ
ЭНЕРГИИ В КЛЕТКЕ. ФОТОСИНТЕЗ
Обмен веществ и превращения энергии в клетке.
Все организмы непрерывно обмениваются веществом и энергией с окружающей средой. Энергия необходима каждой клетке, чтобы осуществлять многочисленные реакции превращения веществ и биосинтеза тех продуктов, которые она использует для процессов своей жизнедеятельности.
В клетке постоянно происходят процессы биосинтеза и распада органических соединений. Как правило, процессы распада осуществляются с участием кислорода, который расходуется на окисление органических веществ. Энергия АТФ используется для энергетических затрат клетки, в частности для обеспечения процессов биосинтеза. Синтез и распад представляют собой две стороны единого процесса обмена веществ и превращения энергии в клетке — метаболизма.
Фотосинтез.
Основным источником энергии для всех живых существ нашей планеты служит солнечный свет. Однако непосредственно использовать энергию Солнца могут только автотрофные организмы. Типичными автотрофами являются зелёные растения. Они сами синтезируют органические вещества, получая из окружающей среды углекислый газ и воду. Этот процесс получил название фотосинтеза.
В основе фотосинтеза лежит превращение энергии света в энергию химических связей АТФ, которая, в свою очередь, даёт возможность превращать углекислый газ в углеводы (глюкозу). В целом процесс фотосинтеза может быть представлен в виде уравнения
Фотосинтезирующими органоидами растений служат хлоропласты, которые содержат зелёный пигмент хлорофилл. Этот пигмент обладает особой химической структурой, которая позволяет ему улавливать энергию света. Процесс фотосинтеза включает в себя две последовательные фазы: световую и темновую.
Световая фаза фотосинтеза протекает на внутренних мембранах хлоропластов. Там под действием света образуются богатые энергией молекулы АТФ и ионы водорода, необходимые для последующей темновой фазы, связанной с фиксацией углекислого газа.
Необходимый для синтеза глюкозы водород образуется в результате фотолиза воды. Фотолиз — это процесс распада молекул воды (Н2О ⇔ Н + + ОН – ), протекающий под действием энергии света. Таким образом, кислород, выделяющийся в процессе фотосинтеза в атмосферу, образуется в результате фотолиза воды:
Темновая фаза фотосинтеза может осуществляться без непосредственного освещения и протекает в хлоропластах. В результате целого ряда последовательных биохимических превращений из углекислого газа и водорода образуется углевод — глюкоза.
Космическая роль фотосинтеза.
Фотосинтез является одним из самых важных процессов на Земле. Он обусловливает природные круговороты углерода, кислорода и других элементов, обеспечивает материальную и энергетическую основу жизни на нашей планете.
С точки зрения продуктивности нет ни одного процесса, который мог бы сравниться с фотосинтезом. Фотосинтезу мы обязаны такими энергетическими ресурсами, как уголь.
Фотосинтез является единственным источником атмосферного кислорода. Жизнь во всём своём современном многообразии смогла сформироваться только благодаря процессу фотосинтеза, приведшему к образованию кислородной атмосферы и накоплению огромной массы органических соединений, ставших основой питания для гетеротрофных организмов.
ВОПРОСЫ и ЗАДАНИЯ:
- 1) Какие способы питания вам известны?
- 2) Что служит источником энергии для синтеза АТФ в клетках автотрофов?
- 3) Что такое фотосинтез?
- 4) Откуда берётся кислород, образующийся в процессе фотосинтеза?
- Объясните значение каждой фазы фотосинтеза.
- Докажите, что фотосинтез играет в природе космическую роль.
ПОДУМАЙТЕ! Каковы особенности питания клеток зелёных растений, не способных к фотосинтезу?
Биология 9 класс. Конспекты по учебнику.
§ 8. ОБМЕН ВЕЩЕСТВ (Пасечник). Электронная версия.
Цитаты использованы в учебных целях.
Источник