Какие способы кодирования звука используются

Кодирования звука.

Звук – это звуковая волна, у которой непрерывно меняется амплитуда и частота. При этом амплитуда определяет громкость звука, а частота — его тон. Чем больше амплитуда звуковых колебаний, тем он громче. А частота писка комара больше частоты сигнала автомобиля. Частоту измеряют в Герцах. 1Гц — это одно колебание в секунду.

Кодирование звука.

Компьютер является мощнейшим устройством для обработки различных типов информации, в том числе и звуковой. Но аналоговый звук непригоден для обработки на компьютере, его необходимо преобразовать в цифровой. Для этого используются специальные устройства — аналого-цифровые преобразователи или АЦП. В компьютере роль АЦП выполняет звуковая карта. Каким же образом АЦП преобразует сигнал из аналогового в цифровой вид? Давайте разберемся.

Пусть у нас есть источник звука с частотой 440Гц, пусть это будет гитара. Сначала звук нужно превратить в электрический сигнал. Для этого используем микрофон. На выходе микрофона мы получим электрический сигнал с частотой 440Гц. Графически он выглядит таким образом:

Следующая задача — преобразовать этот сигнал в цифровой вид, то есть в последовательность цифр. Для этого используется временная дискретизация — аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина интенсивности звука, которая зависит от амплитуды. Другими словами через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации измеряется в Герцах. Соответственно, если мы будет измерять наш сигнал 100 раз в секунду, то частота дискретизации будет равна 100Гц.

Вот примеры некоторых используемых частот дискретизации звука:

  • 8 000 Гц — телефон, достаточно для речи;
  • 11 025 Гц;
  • 16 000 Гц;
  • 22 050 Гц — радио;
  • 32 000 Гц;
  • 44 100 Гц — используется в Audio CD;
  • 48 000 Гц — DVD, DAT;
  • 96 000 Гц — DVD-Audio (MLP 5.1);
  • 192 000 Гц — DVD-Audio (MLP 2.0);
  • 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;
  • 5,644,800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

В итоге наш аналоговый сигнал превратится в цифровой, а график станет уже не гладким, а ступенчатым, дискретным:

Глубина кодирования звука — это количество возможных уровней сигнала. Другими словами глубина кодирования это точность измерения сигнала. Глубина кодирования измеряется в битах. Например, если количество возможных уровней сигнала равно 255, то глубина кодирования такого звука 8 бит. 16-битный звук уже позволяет работать с 65536 уровнями сигнала. Современные звуковые карты обеспечивают глубину кодирования в 16 и даже 24 бита, а это возможность кодирования 65536 и 16 777 216 различных уровней громкости соответственно.

Зная глубину кодирования, можно легко узнать количество уровней сигнала цифрового звука. Для этого используем формулу:

где N — количество уровней сигнала, а i — глубина кодирования.

Например, мы знаем, что глубина кодирования звука 16 бит. Значит количество уровней цифрового сигнала равно 2 16 =65536.

Чтобы определить глубину кодирования если известно количество возможных уровней применяют эту же формулу. Например, если известно, что сигнал имеет 256 уровней сигнала, то глубина кодирования составит 8 бит, так как 2 8 =256.

Как понятно из данного вышеприведенного рисунка, чем чаще мы будем измерять уровень сигнала, т.е. чем выше частота дискретизации и чем точнее мы будем его измерять, тем более график цифрового сигнала будет похож на аналоговый график, соответственно, тем выше качество цифрового звука мы получим. И тем больший объем будет иметь файл.

Кроме того, мы рассматривали монофонический (одноканальный) звук, если же звук стереофонический, то размер файла увеличивается в 2 раза, так как он содержит 2 канала.

Читайте также:  Сформулируйте цель предстерилизационной очистки способы проведения

Рассмотрим пример задачи.

Какой объем будет иметь звуковой монофонический файл содержащий звук, если длительность звука 1 минута, глубина кодирования 8 бит, а частота дискретизации 22050Гц?

Зная частоту дискретизации и длительность звука легко установить количество измерений уровня сигнала за все время. Если частота дискретизации 22050Гц — значит за 1 секунду происходит 22050 измерений, а за минуту таких измерений будет 22050*60=1 323 000.

На одно измерение требуется 8 бит памяти, следовательно на 1 323 000 измерений потребуется 1 323 000*8 = 10 584 000 бит памяти. Разделив полученное число на 8 получим объем файла в байтах — 10584000/8=1 323 000 байт. Далее, разделив полученное число на 1024 получим объем файла в килобайтах — 1 291,9921875 Кбайт. А разделив полученное число еще раз на 1024 и округлив до сотых получим размер файла в мегабайтах — 1 291,9921875/1024=1,26Мбайт.

Источник

Кодирование звуковой информации

Вы будете перенаправлены на Автор24

Непрерывные и дискретные звуковые сигналы

Звук представляет собой непрерывный сигнал, а именно звуковую волну с меняющейся амплитудой и частотой. Чем выше амплитуда сигнала, тем он громче воспринимается человеком. Чем больше частота сигнала, тем выше его тон.

Рисунок 1. Амплитуда колебаний звуковых волн

Частота звуковой волны определяется количеством колебаний в одну секунду. Данная величина измеряется в герцах (Гц, Hz).

Ухо человека воспринимает звуки в диапазоне от $20$ Гц до $20$ кГц, данный диапазон называют звуковым. Количество бит, которое при этом отводится на один звуковой сигнал, называют глубиной кодирования звука. В современных звуковых картах обеспечивается $16-$, $32-$ или $64-$битная глубина кодирования звука. В процессе кодирования звуковой информации непрерывный сигнал заменяется дискретным, то есть преобразуется в последовательность электрических импульсов, состоящих из двоичных нулей и единиц.

Частота дискретизации звука

Одной из важных характеристик процесса кодирования звука является частота дискретизации, которая представляет собой количество измерений уровня сигнала за $1$ секунду:

  • одно измерение в одну секунду соответствует частоте $1$ гигагерц (ГГц);
  • $1000$ измерений в одну секунду соответствует частоте $1$ килогерц (кГц) .

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Количество измерений может находиться в диапазоне от $8$ кГц до $48$ кГц, причем первая величина соответствует частоте радиотрансляции, а вторая — качеству звучания музыкальных носителей.

Чем выше частота и глубина дискретизации звука, тем более качественно будет звучать оцифрованный звук. Самое низкое качество оцифрованного звука, которое соответствует качеству телефонной связи, получается, когда частота дискретизации равна 8000 раз в секунду, глубина дискретизации $8$ битов, что соответствует записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, которое соответствует качеству аудио-CD, достигается, когда частота дискретизации равна $48000$ раз в секунду, глубина дискретизации $16$ битов, что соответствует записи двух звуковых дорожек (режим «стерео»).

Готовые работы на аналогичную тему

Информационный объем звукового файла

Следует отметить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Оценим информационный объём моноаудиофайла ($V$), это можно сделать, используя формулу:

$V = N \cdot f \cdot k$,

где $N$ — общая длительность звучания, выражаемая в секундах,

$f$ — частота дискретизации (Гц),

$k$ — глубина кодирования (бит).

Например, если длительность звучания равна $1$ минуте и имеем среднее качество звука, при котором частота дискретизации $24$ кГц, а глубина кодирования $16$ бит, то:

$V=60 \cdot 24000 \cdot 16 \ бит=23040000 \ бит=2880000 \ байт = 2812,5 \ Кбайт=2,75 \ Мбайт.$

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.

Например, оценим информационный объём цифрового стереозвукового файла, у котрого длительность звучания равна $1$ секунде при среднем качестве звука ($16$ битов, $24000$ измерений в секунду). Для этого глубину кодирования умножим на количество измерений в $1$ секунду и умножить на $2$ (стереозвук):

$V=16 \ бит \cdot 24000 \cdot 2 = 768000 \ бит = 96000 \ байт = 93,75 \ Кбайт.$

Читайте также:  Способы работы с фанерой

Основные методы кодирования звуковой информации

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых выделяют два основных направления: метод FM и метод Wave-Table.

Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых будет представлять собой правильную синусоиду, а это значит, что его можно описать кодом. Процесс разложения звуковых сигналов в гармонические ряды и их представление в виде дискретных цифровых сигналов происходит в специальных устройствах, которые называют «аналогово-цифровые преобразователи» (АЦП).

Рисунок 2. Преобразование звукового сигнала в дискретный сигнал

На рисунке 2а изображен звуковой сигнал на входе АЦП, а на рисунке 2б изображен уже преобразованный дискретный сигнал на выходе АЦП.

Для обратного преобразования при воспроизведении звука, который представлен в виде числового кода, используют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука изображен на рис. 3. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.

Рисунок 3. Преобразование дискретного сигнала в звуковой сигнал

На рисунке 3а представлен дискретный сигнал, который мы имеем на входе ЦАП, а на рисунке 3б представлен звуковой сигнал на выходе ЦАП.

Таблично-волновой метод (Wave-Table) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Примеры форматов звуковых файлов

Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.

Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.

Формат МРЗ (MPEG-1 Audio Layer 3) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.

Источник

Кодирование и обработка звуковой информации

Звуковая информация. Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с непрерывно меняющейся интенсивностью и частотой.

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука (рис. 1.1).

Рис. 1.1. Зависимость громкости и высоты тона звука от интенсивности и частоты звуковой волны

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица «децибел» (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Таблица 5.1. Громкость звука

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» (рис. 1.2).

Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую диалогового сигнала.

Читайте также:  Способы производства первобытно общинный

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

Глубина кодирования звука — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 I . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 I = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему — 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.

При сохранении звука в форматах со сжатием отбрасываются «избыточные» для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Контрольные вопросы

1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

Задания для самостоятельного выполнения

1. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?

1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.

2. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:

а) моно, 8 битов, 8000 измерений в секунду;

б) стерео, 16 битов, 48 000 измерений в секунду.

3. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5″ (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):

а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;

б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.

Источник

Оцените статью
Разные способы