Какие способы классификации звезд вам известны

Звёзды и их особенности

Звезда — это некий газовый шарообразный космический объект, излучающий свет, и в недрах которого ранее происходили реакции термоядерного синтеза (или происходят сейчас). Автор фото — Jon Pumpkin, ссылка на оригинал (фото было изменено).

Звёзды — большие космические объекты. Настолько большие, что вокруг них образуются целые системы.
Различные космические объекты (планеты, астероиды, кометы и другие), вращающиеся вокруг центральной звезды — и есть такие системы. Например, мы находимся Солнечной системе. И подобных ей во Вселенной миллиарды миллиардов.

Виды звёзд

Звёзды различают по таким параметрам, как масса, размер и светимость. Цвет их изменяется от красного до голубого. И чем ближе к голубому — тем выше температура космического объекта.

Красный (класс M) — 2000-3500 градусов.
Оранжевый (класс K) — от 3500 до 5000 градусов.
Жёлтый (класс G) — 5-6 тысяч градусов. К данному типу относится и наше Солнце.
Жёлто-белый (класс F) — от 6000 К до 7500 К.
Белый (класс A) — 7500 К — 10000 К.
Бело-голубой (класс B) — 10-30 тысяч градусов.
Голубой (класс O) — 30-60 тысяч К.

Коричневый карлик. Это тип звёзд, которые на излучение тратят больше энергии, чем получают в результате ядерной реакции. Их температура около 300-500 градусов.

Белый карлик. Практически все звёзды завершают свою эволюцию превращением в белых карликов.
В конце своей жизни они начинают сжиматься, уменьшаясь в сотни раз от своего первоначального размера. При этом они обретают плотность, превосходящую плотность воды в миллион раз. Однако, теряют источники энергии и постепенно остывают. Такую участь ждёт и наше Солнце (но сейчас его относят к типу жёлтых карликов).

Красный гигант. Тип звёзд, имеющих относительно низкую температуру (3-5 тысяч градусов), но при этом обладающие огромной светимостью.

Типа Вольфа — Райе. Класс звёзд, обладающих очень высокой температурой и светимостью.

Сверхновые. Это те звёзды, которые закачивают свой цикл взрывным процессом. Если в спектре такой вспышки присутствуют линии водорода — это Сверхновая 2 типа, если нет — 1 типа.

Новые. Это Сверхновые, вспышка которых гораздо слабее — не такая яркая, и выделяет не так много энергии.

Гиперновые. Это очень большие Сверхновые.
Или, другими словами, Гиперновые — это очень большие и тяжёлые звёзды (более 100 масс Солнца), оканчивающие свою эволюцию взрывом.

Яркие голубые переменные (ЯГП). Очень яркие гигантские звёзды, ещё и пульсирующие при этом. Их сияние может быть, представьте только, в миллион раз сильнее солнечного.
Полагают, это объясняется тем, что звёзды такого типа сбрасывают излишки энергии — отсюда и такое яркое сияние.

Ультраяркие рентгеновские источники. Это тип звёзд, имеющих очень сильное излучение, но только в рентгеновском диапазоне.

Нейтронные звёзды. Это тип звёзд, сжатие Ядра которых не прекращается до тех пор, пока практически все частицы не превратятся в нейтроны.
Масса таких звёзд превосходит массу Солнца в полтора — три раза, но их диаметр при этом около 10 км. Это насколько же высокой плотностью они обладают?!

Звёздные системы

Звёздные системы могут состоять из одной звезды, двух или более.
Самый распространённый тип звёздных систем — двойной (две звезды, связанные гравитационно друг с другом и обращающиеся вокруг одного центра масс) — около 70% всех звёзд являются двойными.

Бывают случаи, когда более десятка звёзды образуют систему. В таком случае они называются звёздным скоплением.

Огромные скопления звёзд, вращающиеся вокруг одного центра масс — это Галактики.

Чёрные дыры
Притяжение чёрных дыр настолько велико, что даже кванты света, попадая в такую ловушку, не могут вырваться и засасываются этими объектами.

Квазары
Полагают, что центрами галактик являются эти ярчайшие объекты, и даже существует теория, что именно квазары и порождают новые галактики.

Источник

Какие способы классификации звезд вам известны

Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет

90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Читайте также:  Три способа изменения конституции

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.

Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.

Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Читайте также:  Механизированный способ очистки применяется ответ сдо

Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.

Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Цефеиды

Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда.

Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Источник

Космос

Ярлыки

вторник, 7 июля 2015 г.

Основные виды звёзд и их эволюция

Это такой этап жизни звезды, при котором энергия излучения полностью компенсируется энергией протекающих в ее центре термоядерных реакций. Свечение у таких звезд может быть различное, в зависимости от конкретного вида реакции. В этом классе ученые выделяют следующие виды звезд:

– голубые
– бело-голубые;
– белые;
– бело-желтые;
– желтые;
– оранжевые;
– красные.

Самую высокую температуру имеют звезды голубые, самую низкую – красные. Солнце относиться к желтым разновидностям звезд, его возраст составляет чуть более четырех с половиной миллиардов лет, а температура указывается учеными для:

– ядра -13 500 000 К;
– короны 1500 000 К.

Карликами именуют такие виды звезд, которые имеют диаметр значительно меньший, чем диаметр Солнца. Ученые выделяют:

– белые карлики (остывающие звезды с небольшой массой в стадии, наступающей после Красного гиганта);
– желтые карлики (так иногда именуют звезды равные Солнцу по температуре, радиусу и массе);
– коричневые карлики (недавно обнаруженные виды звезд имеющих очень слабое свечение, в недрах которых термоядерные реакции не идут, они часто позиционируются как планеты);
– красный карлик (небольшие звезды с диаметром не более трети диаметра Солнца, сравнительно холодные);
– черный карлик (конечная стадия эволюции звезды с небольшой массой, полностью остывшая и безжизненная).

Основная (гарвардская) спектральная классификация звёзд
Класс Температура,
K
Истинный цвет Видимый цвет Основные признаки
M 2000—3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.
G 5000—6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500—5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
B 10 000—30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500—10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000—7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
O 30 000—60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.

Данный вид представляют объекты, блеск и динамика развития которых по тем или иным причина менялись не менее одного раза. Виды переменных звезд многочисленны, это и:

– пульсирующие;
– вращающиеся;
– эруптивные;
– новые и другие нестабильные и плохо прогнозируемые звезды.

Эволюцию даже одной звезды нельзя проследить в течение жизни нескольких поколений людей. Жизнь самых короткоживущих звезд исчисляется миллионами лет. Человечество столько не живет. Поэтому возможность проследить звездную эволюцию от начала – рождения звезды – до ее конца заключается в сравнении химических и физических характеристик звезд на разных стадиях развития.

Главным показателем физических свойств звезды является ее светимость и цвет. По этим характеристикам звезды объединили в группы, которые называются последовательностями. Их несколько: главная последовательность, последовательность сверхгигантов, ярких и слабых гигантов. Есть еще субгиганты, субкарлики и белые карлики.

Эти смешные названия отражают разные стадии состояния звезды, которые она проходит в процессе своей эволюции. Два астронома Герцшпрунг и Рессел составили диаграмму, которая связывает температуру поверхности звезды с ее светимостью. Температура звезды определяется по ее цвету. Оказалось, что самые горячие звезды – голубые, самые холодные – красные. Когда Герцшпрунг и Рессел расположили на диаграмме звезды с известными физическими характеристиками – светимость-цвет (температура), то оказалось, что они располагаются группами. Получилась довольно веселая картинка, где место звезды на ней определяло, на каком этапе эволюции находится эта звезда.

Больше всего звезд (почти 90%) оказалось на главной последовательности. Значит, основную часть своей жизни звезда проводит именно в этом месте диаграммы. На диаграмме также видно, что самые мелкие звезды – карлики – находятся внизу, а самые большие – сверхгиганты — вверху.

Три пути развития эволюции звезд

Время, отпущенное для жизни звезде, определяется, прежде всего, ее массой. Масса звезды также определяет и то, во что она превратится, когда перестанет быть ею. Чем больше масса, тем короче жизнь звезды. Самые массивные – сверхгиганты – живут всего несколько миллионов лет, тогда как большинство звезд средней упитанности – приблизительно 15 млрд. лет.

Все звезды, после того, как заканчивается источник энергии, благодаря которому они живут – горят ярким пламенем, начинают тихо остывать, уменьшаться в размерах и сжиматься. Сжимаются они до состояния массивного компактного объекта с очень высокой плотностью: белого карлика, нейтронной звезды и черной дыры.

Звезды с небольшой массой выдерживают сжатие, так как гравитация относительно невелика. Они прессуются до небольшого белого карлика и остаются в этом стабильном состоянии до тех пор, пока их масса не увеличится до критического значения.

Если масса звезды больше критического значения, то она продолжается сжиматься до тех пор, пока электроны не «слипнутся» с протонами, образуя нейтронное вещество. Таким образом, получается небольшой нейтронный шар радиусом несколько километров – нейтронная звезда.

Если масса звезды настолько огромна, что гравитация продолжает сжимать даже нейтронное вещество, то происходит гравитационный коллапс, после чего на месте гигантской звезды образуется черная дыра.

Что такое белый карлик? То, что не стало нейтронной звездой или черной дырой.

Это то, во что превращаются средние и малые звезды в конце своей эволюции. Термоядерные реакции уже закончились, однако, они остаются очень горячими плотными газовыми шарами. Звезды медленно остывают, светясь ярким белым светом. Участь белого карлика ожидает и наше Солнце, так как его масса ниже критической. Критическая масса равна 1,4 массы Солнца. Это значение называется пределом Чандрасекара. Чандрасекар – индийский ученый астроном, который рассчитал это значение.

Состоянием нейтронной звезды заканчивается эволюция таких звезд, массы которых превышает солнечную в несколько раз. Нейтронная звезда возникает в результате вспышки сверхновой. При массе в 1,5-2 раза больше солнечной, она имеет радиус 10-20 км. Нейтронная звезда быстро вращается и периодически испускает потоки элементарных частиц и электромагнитное излучение. Такие звезды называются пульсарами. Состояние нейтронной звезды также определяется ее массой. Предел Оппенгеймера-Волкова – величина, определяющая максимально возможную массу нейтронной звезды. Чтобы находиться стабильно в таком состоянии, необходимо, чтобы ее масса не превышала трех солнечных масс.

Если масса нейтронной звезды превосходит это значение, то чудовищная сила гравитации так сжимает ее в объятиях коллапса, что она становится черной дырой.

Черная дыра – это то, что получается, когда гравитационное сжатие массивных тел неограниченно, т.е. когда звезда сжимается до такой степени, что становится абсолютно невидимой. Ни один луч света не может покинуть ее поверхность. И здесь также есть показатель, определяющий состояние космического объекта в качестве черной дыры. Это гравитационный радиус, или радиус Шварцшильда. Еще его называют горизонтом событий, так как описать или увидеть, что происходит внутри сферы с таким радиусом на месте сколапсированной звезды, невозможно.

Может быть, внутри это сферы есть прекрасные яркие миры или выход в другую Вселенную. Но для простого наблюдателя это просто провал в пространстве, который закручивает вокруг себя свет, идущий от других звезд и поглощает космическое вещество. По тому, как ведут себя рядом с ней другие космические объекты, мы можем делать предположения об ее свойствах.

Например, можно предположить, что самые массивные черные дыры, находятся в том месте, где наблюдается самое яркое свечение звездных скоплений. Притягивая к себе звездное вещество и другие космические объекты, черные дыры заставляют их светиться, окружая себя, ярким светящимся ореолом — квазаром. Тьма не может существовать без света, а свет существует благодаря тьме. Это доказывает эволюция звезд.

Источник

Читайте также:  Ничего каким способом образовано
Оцените статью
Разные способы