Какие способы доказательства тождеств существуют

Как доказать тождество?

Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».

В простых случаях, когда тождество не содержит переменных и иррациональности , можно просто вычислить правую и левую части.

В более сложных случаях, доказывая тождество, приходится прибегать к преобразованиям, потому что просто посчитать «в лоб» уже нельзя. При этом можно:

  1. Преобразовывать обе части одновременно (как в примере выше).
  2. Преобразовывать только левую или только правую часть.
  3. Переносить слагаемые через равно, меняя знак.
  4. Умножать левую и правую часть на одно и то же число.
  5. Использовать все математические правила и формулы ( формулы сокращенного умножения, свойства степени, правила работы с дробями и разложения на множители и так далее и тому подобное). Именно пятый пункт при доказательстве тождеств используется чаще всего, поэтому все эти свойства и правила нужно знать, помнить и уметь использовать.

Работаем с левой частью, не трогая правую.
С помощью формул сокращенного умножения раскроем скобки слева,…

Обе части равны — тождество доказано

Преобразуем правую часть, не трогая левую.
Раскроем скобки с помощью формулы квадрата суммы ,…

…упростим одно из слагаемых, сократив \(x\) и \(\frac<1>\) , …

Слева и справа одинаковые выражения, значит тождество доказано.

Источник

Доказательства тождеств

Доказательство тождеств. В математике существует множество понятий. Одно из них тождество.

  • Тождеством называют равенство, которое выполняется при всех значениях переменных, которые в него входят.

Некоторые тождества мы уже знаем. Например, все формулы сокращенного умножения являются тождествами.

Доказать тождество – это значит установить, что для любого допустимого значение переменные его левая часть равна правой части.

В алгебре существует несколько различных способов доказательства тождеств.

Способы доказательства тождеств

  • Выполнить равносильные преобразования левой части тождества. Если в итоге получим правую часть, тогда тождество считается доказанным.
  • Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.
  • Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.
  • Из правой части тождества вычитаем левую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.
  • Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Как видите способов достаточно много. Какой способ выбрать в данном конкретном случае, зависит от тождества, которое вам необходимо доказать. По мере того, как вы будете доказывать различные тождества, придет и опыт в выборе способа доказательства.

Рассмотрим несколько простых примеров

Пример 1.

Докажите тождество x*(a+b) + a*(b-x) = b*(a+x).

Решение.

Так как в правой части небольшое выражение, попытаемся преобразовать левую часть равенства.

Приведем подобные слагаемые и вынесем общий множитель за скобку.

Получили что левая часть после преобразований, стала такой же как и правая часть. Следовательно, данное равенство является тождеством.

Пример 2.

Докажите тождество a^2 + 7*a + 10 = (a+5)*(a+2).

Решение.

В данном примере можно поступить следующим способом. Раскроем скобки в правой части равенства.

Видим, что после преобразований, правая часть равенства стала такой же как и левая часть равенства. Следовательно, данное равенство является тождеством.

Источник

Лекция №3. Доказательство тождеств

ЛЕКЦИЯ №3 Доказательство тождеств

Цель: 1. Повторить определения тождества и тождественно равных выражений.

2.Ввести понятие тождественного преобразования выражений.

3. Умножение многочлена на многочлен.

4. Разложение многочлена на множители способом группировки.

Пусть каждый день и каждый час

Пусть добрым будет ум у нас,

А сердце умным будет!

В математике существует множество понятий. Одно из них тождество.

Тождеством называют равенство, которое выполняется при всех значениях переменных, которые в него входят. Некоторые тождества мы уже знаем.

Читайте также:  Что такое фразеологический способ

Например, все формулы сокращенного умножения являются тождествами.

Формулы сокращенного умножения

4. a3 ± b3 = (a ± b)(a2 ab + b2).

Доказать тождество – это значит установить, что для любого допустимого значение переменные его левая часть равна правой части.

В алгебре существует несколько различных способов доказательства тождеств.

Способы доказательства тождеств

    Выполнить равносильные преобразования левой части тождества. Если в итоге получим правую часть, тогда тождество считается доказанным. Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным. Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным. Из правой части тождества вычитаем левую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным. Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Как видите способов достаточно много. Какой способ выбрать в данном конкретном случае, зависит от тождества, которое вам необходимо доказать. По мере того, как вы будете доказывать различные тождества, придет и опыт в выборе способа доказательства.

Тождество — это уравнение, которое удовлетворяется тождественно, т. е. справедливо для любых допустимых значений входящих в него переменных. Доказать тождество — значит установить, что при всех допустимых значениях переменных его левая и правая части равны.
Способы доказывания тождества:
1. Выполняют преобразования левой части и получают в итоге правую часть.
2. Выполняют преобразования правой части и в итоге получают левую часть.
3. По отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение.
4. Составляют разность левой и правой части и в результате её преобразований получают нуль.
Рассмотрим несколько простых примеров

Пример 1. Докажите тождество x·(a+b) + a·(b-x) = b·(a+x).

Так как в правой части небольшое выражение, попытаемся преобразовать левую часть равенства.

x·(a+b) + a·(b-x) = x·a +x·b + a·b – a·x.

Приведем подобные слагаемые и вынесем общий множитель за скобку.

x·a + x·b + a·b – a·x = x·b + a·b = b·(a + x).

Получили что левая часть после преобразований, стала такой же как и правая часть. Следовательно, данное равенство является тождеством.

В данном примере можно поступить следующим способом. Раскроем скобки в правой части равенства.

(a+5)·(a+2) = (a²) + 5·a +2·a +10 = a²+7·a + 10.

Видим, что после преобразований, правая часть равенства стала такой же как и левая часть равенства. Следовательно, данное равенство является тождеством.

« Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения»

Выяснить какое равенство является тождеством:

4. рху ( — р2 х2 у) = — р3 х3 у3.

«Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений»

Равенство верное при любых значениях переменных, называют тождеством. Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений.
Докажем тождество:
xy — 3y — 5x + 16 = (x — 3)(y — 5) + 1 Преобразуем левую часть этого равенства:
xy — 3y — 5x + 16 = (xy — 3y) + (- 5x + 15) +1 = y(x — 3) — 5(x -3) +1 = (y — 5)(x — 3) +1 В результате тождественного преобразования левой части многочлена мы получили его правую часть и тем самым доказали, что данное равенство является тождеством.
Для доказательства тождества преобразуют его левую часть в правую или его правую часть в левую, или показывают, что левая и правая части исходного равенства тождественно равны одному и тому же выражению.

Умножение многочлена на многочлен

Умножим многочлен a + b на многочлен c + d. Составим произведение этих многочленов:
(a+b)(c+d).
Обозначим двучлен a + b буквой x и преобразуем полученное произведение по правилу умножения одночлена на многочлен:
(a+b)(c+d) = x(c+d) = xc + xd.
В выражение xc + xd. подставим вместо x многочлен a+b и снова воспользуемся правилом умножения одночлена на многочлен:
xc + xd = (a+b)c + (a+b)d = ac + bc + ad + bd.
Итак: (a+b)(c+d) = ac + bc + ad + bd.
Произведение многочленов a + b и c + d мы представили в виде многочлена ac + bc + ad + bd. Этот многочлен является суммой всех одночленов, получающихся при умножении каждого члена многочлена a + b на каждый член многочлена c + d.
Вывод: произведение любых двух многочленов можно представить в виде многочлена.
Правило: чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.
Заметим, что при умножении многочлена, содержащего m членов на многочлен, содержащий n членов в произведении до приведения подобных членов должно получиться mn членов. Этим можно воспользоваться для контроля.

Читайте также:  Doux nettoyant gommant express clarins способ применения

Разложение многочлена на множители способом группировки:

Ранее мы познакомились с разложением многочлена на множители путем вынесения общего множителя за скобки. Иногда удается разложить многочлен на множители, используя другой способ — группировку его членов.
Разложим на множители многочлен
ab — 2b + 3a — 6 Сгруппируем его так, чтобы слагаемые в каждой группе имели общий множитель и вынесем этот множитель за скобки:
ab — 2b + 3a — 6 = (ab — 2b) + (3a — 6) = b(a — 2) + 3(a — 2) Каждое слагаемое получившегося выражения имеет общий множитель (a — 2). Вынесем этот общий множитель за скобки:
b(a — 2) + 3(a — 2) = (b +3)(a — 2) В итоге мы разложили исходный многочлен на множители:
ab — 2b + 3a — 6 = (b +3)(a — 2) Способ, который мы применили для разложения многочлена на множители называют способом группировки.
Разложение многочлена ab — 2b + 3a — 6 на множители можно выполнить, группируя его члены иначе:
ab — 2b + 3a — 6 = (ab + 3a) + (- 2b — 6) = a(b + 3) -2(b + 3) = (a — 2)(b + 3)

1. Способы доказательства тождеств.

2. Что называют тождественным преобразованием выражения.

3. Умножение многочлена на многочлен.

4. Разложение многочлена на множители способом группировки

Источник

Тождество — принцип, закон и примеры преобразования выражений

Основные законы логики

Логика — это раздел философии. Он представляет собой науку о формах и законах правильного мышления. Закон логики — необходимая связь между логическими формами в процессе построения последовательного рассуждения. Цель его состоит в формулировании правил и рекомендаций, с помощью которых можно найти путь к истине. Это не законы самого окружающего мира, а правила мышления о нём.

Аристотель, который создал классификацию свойств бытия, всесторонне определяющих субъект, впервые сформулировал три из четырёх логических законов и подразумевал под этим предпосылку для объективной связи мыслей в процессе размышления. Основными в формальной логике считаются законы:

  • тождества;
  • исключённого третьего;
  • непротиворечия;
  • достаточного основания.

Без этого закона невозможно установить, что такое логическое следование, и понять смысл доказательства.

Логический принцип тождественности

Тождество — это примерное равенство, сходство объектов по какому-либо показателю. Принцип (синоним слова закон) его — один из основных логических законов формальной логики как науки, в соответствии с которым в процессе размышления любое суждение должно оставаться тождественными самому себе.

Аристотель формулировал это положение так: «Иметь не одно значение — значит, не иметь ни одного значения». В виде формулы этот принцип записывается следующим образом: А есть А или А = А, где А — мысль, которая может быть любой. На этом законе основаны многие положения логики. Например, следующие:

  • пусть установлено: по определённым признакам мысль А тождественна В. Тогда верно и утверждение, что В по тем же признакам тождественна А;
  • если А по какому-то показателю равна В, а В при этом соответствует С, то А будет равна С.

Нарушение закона тождества — пример, который привёл к логической ошибке. Ученик на уроке спрашивает учителя: «Можно наказывать человека за то, чего он не сделал?». «Конечно, нельзя», — отвечает учитель. «В таком случае не наказывайте меня, — говорит ученик, — я не сделал домашнюю работу». В этом диалоге нарушен логический принцип тождества, так как понятие «не сделал» применяется в разных значениях:

  1. Не сделал, то есть не совершил что-то плохое, за что можно наказать.
  2. Не сделал что-то, что должен был выполнить.

Получилось, что в одно и то же понятие было вложено два различных смысла. Нарушение закона может выражаться в следующих формах:

  1. Подмена или потеря предмета мысли.
  2. Намеренное искажение.
  3. Замена тезиса — нетождественность положения, которое пытаются доказать, исходному тезису.
Читайте также:  Социальные сети как способ продвижения товара

Нарушение закона тождества ведёт к неясности мысли, что совершенно недопустимо во многих областях, например, в юриспруденции. Неточное определение или неправильно истолкованное понятие в сфере права способствует появлению беззакония и произвола, поэтому в процессе мышления принцип тождественности выступает в виде важного правила.

Этот закон вводит требование об отсутствии в ходе размышлений подмены или смешения мысли об объекте или замены предмета мысли. Нужно учитывать, что даже в законодательных актах часто попадаются двусмысленности, а это обязательно приводит к разночтениям в истолковании и неоднозначности в применении.

Виды преобразований

Тождеством в математике называется равенство, которое верно при всех значениях, входящих в него переменных для различных классов функций. Значение этого слова — полное сходство, подобие объектов, явлений друг другу или самим себе. К тождествам можно отнести:

  1. Формулы сокращённого умножения в алгебре.
  2. Тождество параллелограмма. Оно гласит, что сумма квадратов длин сторон параллелограмма равна сумме квадратов длин его диагоналей.
  3. Основное тригонометрическое тождество sin 2 α + cos 2 α = 1, которое связывает квадраты функций синуса и косинуса для любых значений углов.
  4. Тождество Эйлера (комплексный анализ).

Тождество Эйлера — e iπ + 1 = 0 — часто приводят как пример феноменального результата, который устанавливает неочевидную зависимость между геометрией (число пи) и математическим анализом (экспонента). Формула связывает пять фундаментальных математических констант:

  • число e — основание натурального логарифма;
  • i — мнимую единицу;
  • число пи — соотношение длин окружности и диаметра;
  • 1 и 0 — нейтральные элементы по операциям умножения и сложения соответственно.

Тождественным преобразованием называются операции, которые проводятся для замены исходного выражения на тождественно равное. Например, x 3 — xy 2 = x (x — y)(x + y) — это тождество, так как вынесение за скобки общего множителя и применение формул сокращённого умножения являются тождественными преобразованиями. Для демонстрации подставим вместо переменных x и y произвольные значения. Пусть x = 5; y = 4. Получим слева: 125 — 5 x 16 = 45, справа 5 (5 — 4)(5 + 4) = 45. Совпадение обеих частей равенства доказывает тождественность.

Способы доказательства

Равенство и тождество, которое относится к предельному случаю равенства, — это термины, используемые в математике при решении уравнений. Для доказательства тождества нужно сделать тождественные преобразования выражений в одной или обеих частях равенства и получить одинаковые результаты. При выполнении преобразований необходимо обращать внимание на область допустимых значений (ОДЗ) переменных. Эти операции могут суживать ОДЗ или оставлять её прежней.

При переходе от выражения x + (-y) к выражению (x — y) область допустимых значений переменных x и y будет прежняя. Переход от выражения (x — 5) к отношению (x — 5) 2 / (x — 5) приводит к сужению ОДЗ переменной x от (-ꚙ, +ꚙ) до (-ꚙ, 5) U (5, +ꚙ). Способы доказательства:

  1. Применить тождественные преобразования к левой части. Если получится выражение, стоящее в правой части, то тождество считается доказанным.
  2. Преобразовать таким же способом правую часть равенства. Если в результате получится выражение, стоящее в левой части, то доказательство получено.
  3. Сделать тождественные преобразования левой и правой части равенства. Если будет достигнут одинаковый результат, то это служит доказательством тождественности обеих частей.
  4. От правой части равенства отнять левую. Выполнить над разностью равносильные преобразования. Получение в итоге нуля считается доказательством тождественности частей.
  5. Из левой части равенства вычесть правую и произвести над разностью тождественные преобразования. В итоге должен получиться нуль. Тождество будет верным.

В теории множеств для доказательства тождественности часто используются круги или диаграммы Эйлера.

В них графическими методами наглядно можно представить различные операции над множествами: пересечение, объединение, разность, симметрическую разность. Существуют методы построения пересекающихся кругов Эйлера для любого выражения онлайн. Это тоже упрощает доказательство тождественности.

Чтобы доказать нетождественность двух частей выражения, требуется найти хотя бы одно значение переменной из области допустимых значений. При ее подстановке числовые выражения частей получатся неравными друг другу. Разница между уравнением и тождеством заключается в том, что первое может быть выполнено только при некоторых значениях переменных, которые будут его решением, а второе — при всех значениях.

Тождество — это многозначный термин, применяемый в философии, математике, физике. Понятие тождественности уникально по охвату им различной проблематики. С ним сталкиваются и школьники на уроках алгебры и геометрии, и крупные учёные при проведении многочисленных исследований в современной науке.

Источник

Оцените статью
Разные способы